Harold W. Iversen papers

Finding aid prepared by Water Resources Collections and Archives staff.
Special Collections & University Archives
The UCR Library
P.O. Box 5900
University of California
Riverside, California 92517-5900
Phone: 951-827-3233
Fax: 951-827-4673
Email: specialcollections@ucr.edu
URL: http://library.ucr.edu/libraries/special-collections-university-archives
© 1999
The Regents of the University of California. All rights reserved.
Descriptive Summary
Title: Harold W. Iversen papers
Date (inclusive): 1878-1975
Date (bulk): 1930-1970
Collection Number: WRCA 081
Creator: Iversen, Harold W.
Extent: 14.0 linear feet (14 boxes)
Repository: Rivera Library. Special Collections Department.
Riverside, CA 92517-5900
Abstract: The collection consists of reports and papers on the subjects of pumps, turbines, fans, metering and flow (hydraulics).
Languages: The collection is in English.
Access
The collection is open for research.
Publication Rights
Copyright has not been assigned to the University of California, Riverside Libraries, Special Collections & University Archives. Distribution or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. To the extent other restrictions apply, permission for distribution or reproduction from the applicable rights holder is also required. Responsibility for obtaining permissions, and for any use rests exclusively with the user.
Preferred Citation
[identification of item], [date if possible]. Harold W. Iversen collection (WRCA 081). Water Resources Collections and Archives. Special Collections & University Archives, University of California, Riverside.
Acquisition Information
Dean M. P. O'Brien, upon his arrival in Berkeley in the late 1920's, started a collection of reprints, pamphlets, etc. on various areas of hydraulics—principally in the fields of interest to civil and mechanical engineers. The base of this collection appears to be the personal collection of Blake van Leer, Professor of Mechanical Engineering at the University, who later was to serve with distinction as President of the Georgia Institute of Technology. The collection of O'Brien was in his office in the Mechanics Building and additions were made continually over the years by Professors E. D. Howe, R. G. Folsom, H. A. Einstein, J. W. Johnson, and H. W. Iversen.
By 1958, when Einstein and Johnson were transferred from the Department of Mechanical Engineering to the Department of Civil Engineering, most of the collection was taken to the then new O'Brien Hall—with the exception of the material on pumps, turbines, etc. which was of interest principally to mechanical engineers. This material was left with Professor Iversen, who systematically cataloged the collection into subject listings. Upon Iversen's death, the collection was transferred to the Water Resources Collections and Archives where it is now known as the Iversen Collection.
Processing History
Processed by Water Resources Collections and Archives staff, 1999.
Collection Number
Collection number updated February 2019. Legacy collection number was MS 76/13. This change was part of a project in 2018/2019 to update the collection numbers for collections in the Water Resources Collections and Archives.
Biographical Note
Harold Walter Iversen died on November 10, 1973 at the age of sixty, after a long and valiant struggle to overcome the effects of major cancer surgery. He is survived by his wife, Ruby Kahler Iversen, and two children, his son Jon and his daughter Karen Iversen Timm, both of Dixon, California.
Harold Iversen was born in San Francisco on September 1, 1913, the son of foreign-born parents-Carl Alfred Iversen, a native of Norway, and Martha Jorgensen Iversen, who came from Denmark. His parents moved to San Pedro, where his father, a former ship captain, found employment as Port Captain and Dock Superintendent. Harold spent his early years in San Pedro, where he acquired a familiarity with ships and with people who work in shipping which later proved important to him.
After completing his secondary education in the public schools of San Pedro, Harold studied at UCLA for two years, completing the pre-engineering program and qualifying for transfer to the Berkeley campus, which at that time had the only Engineering College in the University system. Before enrolling at Berkeley, he spent two years earning the money to finance his education. Most of the jobs related to the sea, ranging from bathhouse attendant to wiper and oiler in the engine rooms of tanker ships, the latter activity keeping him at sea for nearly a year.

Following receipt of the B.S. degree in Engineering after two years at Berkeley, Harold worked as a Mechanical Engineer for the Ingersoll-Rand Corporation in New Jersey, where his work involved the development and testing of compressors, blowers, pumps, and allied equipment. During the four-year period at this work, he rose from engineering trainee to responsible charge of the test work in the laboratory. This practical engineering experience contributed to his ability to later teach engineering subjects from a practical viewpoint.

Harold returned to the Berkeley campus in 1941 to teach in the general field of fluid mechanics and to qualify for the M.S. degree, which was awarded to him in 1943. He served in several academic ranks and was advanced to Professor of Mechanical Engineering in 1957. While he taught a variety of different courses in the laboratory and lecture room, his major interest was in the field of pumping machinery. The course in this subject, taught for a number of years, was a developing course, keeping pace with his research in the field. At the time of his death Harold was engaged in the compilation of his research and course notes into a textbook on pumping machinery.

Harold was in local charge of the engineering group sent to Bikini Atoll to measure the wave disturbance produced by the early atom bomb tests conducted there. He developed the recording instruments required for these observations and was able to improvise on the spot, as indicated by his use of empty tomato cans lashed to palm trees at various heights to determine the maximum heights of the wave crossing the atoll.

As a professional engineer, Harold was called upon to serve as a consultant on fluid mechanics problems, one of these being the problem of designing a dredge pump for use in Ghana, at a site where the sand contained diamond particles capable of eroding the runners of pumps quite rapidly. His design of a jet pump solved the problem, with laboratory models to support his conclusions. This preoccupation with models was also evidenced by his success in solving problems for the City of San Francisco, where the pump intakes in the waste treatment plants could not carry the load until revamped, following model tests carried on by Professor Iversen. He also used models to finalize the hydraulic design of the fountain at the Bank of America in San Francisco, a design which has been copied for other fountains.

Professor Iversen served as Associate Dean of the College of Engineering from 1964 to 1969. Here he worked with students and faculty members to improve the advising system of the College and to aid students in finding solutions to their problems of academic standing. He served as advisor to student organizations and exercised his hobby of cooking by serving as barbecue chef at the annual ASME student picnic.

Harold will be remembered by his colleagues and former students for his careful and time-consuming preparation for class presentations, his clear and concise reporting of research and design work, and his insistence upon the best performance of which the students were capable.

E. D. Howe
J. W. Johnson
P. B. Stewart

Collection Scope and Contents
The collection consists of reports and papers on the subjects of pumps, turbines, fans, metering and flow (hydraulics).

Collection Arrangement
The collection is arranged topically into 66 series.

Indexing Terms
The following terms have been used to index the description of this collection in the library's online public access catalog.

Subjects
Flow meters
Fluid dynamics
Fluid mechanics
Hydraulic measurements
Hydraulic turbines
Hydraulics
Hydrodynamics
Turbines
Water hammer

Genres and Forms of Materials
Papers (documents)
Reports

Series 1. Disk Friction Pumps 1926-1969

Box 1, Folder 1.1
November 17, 1922 August 31, 1928 September 28, 1928

Box 1, Folder 1.2
Correspondence from Westco Pump Sales Co. re multi-stage pumps, Also miscellaneous catalogs and blueprints on Westco pumps 1951

Box 1, Folder 1.3
Summary of single stage tests (turbulence pump), by C.C. Ross, 4 1. (typescript). Re U.C. pump development, Navy trim pumps March 1947

Box 1, Folder 1.4
Report on partial completion of tests on Burkes Pump with application to ultra-rough surfaces includes curves, by William Everett April 1935

Box 1, Folder 1.5
Pumpen kleiner Leistung, by F.R. Lorenz, in *Zeitschrift des Vereines deutscher Ingenieure*, Band 78, Nr.9, (pp.287-291). Also English translation. - Translation of Part C: Water-ring pumps with common discharge for air and pumped-water. Bucket work is positive, both for air and water output, by C. Pfleiderer, in *Die Kreiselpumpen*,2nd add. (pp.443-447) - "Wee-Mac Self-Priming Pump," *Mechanical Engineering*, (pp.315). Also miscellaneous correspondence and literature re pumps März 1934 May 1933

Box 1, Folder 1.6
Disc pump tests, ring leakage and single stage tests, by A.C. Marshall March 1943

Box 1, Folder 1.7
Single stage test unit, by Wilcox Haggard April 1943

Box 1, Folder 1.8
Data sheet and curves on Westco ratios, by R.G. Folsom March 1943

Box 1, Folder 1.9

Box 1, Folder 1.10

Box 1, Folder 1.11

Box 1, Folder 1.12

Box 1, Folder 1.13
Combined hydrostatic and hydrodynamic principles applied to non-contacting face seals, by James F. Gardner (presented at the Fourth International Conference on Fluid Sealing held in conjunction with the 24th ASLE annual meeting in Philadelphia,), American Society of Lubrication Engineers, Park Ridge, Ill., pp.84-93 (FICFS Preprint no.36) May 5-9, 1969

Box 1, Folder 1.14
Development of a liquid dynamic seal to vacuum, by E. Schnetzer and R.J. Rossbach (presented at the Fourth International Conference on Fluid Sealing held in conjunction with the 24th ASLE annual meeting in Philadelphia,), American Society of Lubrication Engineers, Park Ridge, Ill., pp.253-262 (FICFS Preprint no.40) May 5-9, 1969

Box 1, Folder 1.15

Box 1, Folder 1.16
The development of a three-stage screw-type labyrinth seal, by A.I. Golubiev (presented at the Fourth International Conference on Fluid Sealing held in conjunction with the 24th ASLE annual meeting in Philadelphia,), American Society of Lubrication Engineers, Park Ridge, Ill., pp.1-3 (FICFS Preprint no.35) May 5-9, 1969

Box 1, Folder 2.1-2.2
Calculation of leakage from pressure measurements, by Wm. R. Walden April 29, 1938

Box 1, Folder 2.3
Pumping machinery notes, by R.G. Folsom
Box 1, Folder 2.4 Characteristic curves of Type V turbine pumps, blueprint graphs, Simonds Machinery Co., San Francisco October 12, 1937

Box 1, Folder 2.5 Notes for ME 127, Chap. I, Pumping machinery problems and solutions, University of California, Department of Mechanical Engineering, Fluid Mechanics Laboratory 1926, 1936

Box 1, Folder 2.6 a) Experimental investigations on the problem of roughness, by H. Schlichting (Verlag von Julius Springer, Berlin, Band VII, Heft 1,), translated by Josef Stauffer, University of California, Department of Mechanical Engineering February 1936

Box 1, Folder 2.7 September 10, 1936

Box 1, Folder 2.8 "Summary of discussion with Dr. Samaras and Mr. Bierlein of Wright-Patterson Field, by H.W. Iversen 4 1., handwritten. Also correspondence, notes, photo re turbulence pump, Ohio State University July 25, 1950,"

Box 1, Folder 2.9 a) Letter from A. Hollander, Byron Jackson Co., Los Angeles, to M.P. O'Brien, U.C. Berkeley, re patent situation on friction pumps dated February 2, 1937

b) Notes for ME 127 on Energy loss in laminar sublayer September 12, 1937

c) Burks shallow and deep well water systems, Decatur Pump Company, Decatur, Ill., 16 p. (Bulletin no. 40-60) 1938

Box 1, Folder 2.10 Dimensions, capacities and typical mountings of self-aligning equalizing types of Kingsbury thrust bearings; horizontal and vertical, Kingsbury Machine Works, Inc., Philadelphia, Pa., 39 p. (Bulletin HV) 1931

Box 1, Folder 2.11 Horizontal mountings; Kingsbury thrust bearings and journal bearings, small to medium sizes, Kingsbury Machine Works, Inc., Philadelphia, Pa., 35 p. (Bulletin S) 1932

Box 1, Folder 2.12 The new 1000 h.p. Wright Cyclone, Wright Aeronautical Corporation, Paterson, N.J. 1936

Box 1, Folder 2.13 Miscellaneous pamphlets:

a) Roots-Connersville Regenerative Turbine Pumps, Roots-Connersville Blower Corp., Connersville, Ind., (Bulletin 260-B11B) 1935

b) Burks pumps, Decatur Pump Company, Decatur, Ill., 30 p. (Catalog no. 34) 1934

c) Burks self priming turbine condensation return units, Decatur Pump Co., Decatur, Ill., 8 p. (Bulletin no. 104C) 1938

d) G200 Series Wright Cyclone, Wright Aeronautical Corporation, Paterson, N.J. 1937

e) Burks self priming super turbine pumps and water systems, Decatur Pump Company, Decatur, Ill., 43 p. (General catalog no. 40) 1937

f) SureVac low speed, self priming centrifugal pumps, Dorward Pump Co., San Francisco, 6 p. (Bulletin no. 501)

g) Regenerative RCS turbine pumps; some outstanding advantages, Roots-Connersville-Wilbraham, Connersville, Ind., 11 p. (Bulletin no. 260-B11) 1935

h) Worthington balanced monobloc regenerative turbine pumps, Worthington Pump and Machinery Corporation, Harrison, N.J., 7 p. (Bulletin W-324-B3) 1935

i) Westco pumps, Westco Pump Corporation, Davenport, Iowa, 8 p. (Form 701) 1936

Box 1, Folder 2.14 "Portable air compressor", Engineering, p. 309 September 27, 1946

Box 1, Folder 2.17 Miscellaneous notes on pumps, by O'Brien and Folsom

Box 1, Folder 2.18 Blueprints on pumps, University of California, Fluid Mechanics Laboratory February 1943

Box 1, Folder 2.19 a) Correspondence between R.G. Folsom and C.D. Bower, Fairbanks, Morse Co., Pomona 1944

b) Miscellaneous advertisements on pumps

Box 1, Folder 2.21 *Influences of the suction nozzle on the characteristics of a peripheral pump and an effective method of their removal*, by Yasutoshi Senoo, in *Reports of Research Institute for Applied Mechanics*, Kyushu University, Vol.III, No. 11, pp.129-153 August 1954.

Box 1, Folder 2.25 *Selbstansaugende Kreiselpumpen und Versuche an einer neuen Pumpe dieser Art*, von Carl Ritter, Max Jänecke, Verlags-buchhandlung, Leipzig 1931.

Box 1, Folder 2.26 *Description of the experimental pump*, by Carl Ritter, Translation, 15 l Spring 1930.

Box 1, Folder 2.29 See 2.28.

Box 1, Folder 2.30 Miscellaneous pamphlets on Aurora pumps, Burks series CT 4CT close coupled turbine pumps, and Armstrong circulators 1966-1969.

Box 1, Folder 2.31 See 2.27.

Box 1, Folder 2.33 Westco catalogues and curves: miscellaneous material on pumping machinery, etc. 1926-1930.

Box 1, Folder 2.34 Westco pump geometry and performance: tables and graphs re pumping machinery performance, etc. 1930.

Box 1, Folder 2.35 *Complete characteristics of a turbulence pump; log book* by Roy E. Leasure March 11, 1947 to June 2, 1947.

Box 1, Folder 2.36 See 1.3.

Box 1, Folder 2.38 See 2.8.

Box 1, Folder 2.39 *Vortex pumps, or, slip in the centrifugal pump*, by Owen A. Price; includes *Communications, in Journal Proceedings*, Institution of Mechanical Engineers, Vol.142, No.5, pp.413-458. Note by Iversen: Questionable vortex head equation - not fundamentally correct. Pointed out by discussers March 1940.

Box 1, Folder 2.40 *Affinity relations for trimming the impeller on a centrifugal pump*, by Arnold W. Zimmerman and William E. Zerbe, for Mech.131B, University of California, Department of Mechanical Engineering, Berkeley, 1 folder, (handwritten). Special data book Spring 1938.

Box 1, Folder 2.41 "Factors affecting the validity of the affinity laws for speed trim," by William E. Zerbe, for ME 131B, University of California, Department of Mechanical Engineering April 23, 1938.

Box 1, Folder 2.42 *Affinity laws for speed and trim*, by W.E. Zerbe A.W. Zimmerman, for ME 131B, University of California, Department of Mechanical Engineering Spring 1938.
Box 1, Folder 3.5
Centrifugal pump - impeller diam. relations, by W.A. Blair and C.F. Hains, for ME 131B, University of California, Department of Mechanical Engineering April 27, 1939

Box 1, Folder 3.6
Cavitation characteristics of centrifugal pumps described by similarity considerations, by G.F. Wislicenus, R.M. Watson, and I.J. Karassik 1937-38?

Box 1, Folder 3.7

Box 1, Folder 3.8
Performance curves on U.C. Pump Test Lab pumps, by H.E. Burrier Spring 1939

Box 1, Folder 3.9
Drawings, graphs and handwritten notes re centrifugal pump characteristics - curves and calculations 1932-1937

Box 1, Folder 3.10
Notes on methods of self-priming centrifugal and rotary pumps handling water, by R.G. Folsom March 17, 1943

Box 1, Folder 3.11
Letter to Editor of Engineering, England, from R.G. Folsom re specific speed of pumps dated November 4, 1940

Box 1, Folder 3.12
Blueprints - solutions to problems on pumps

Box 1, Folder 3.13

Box 1, Folder 3.14
Centrifugal pumps and blowers, by G. Ure Reid, Letter to Editor, Engineering, p.16. Note by Iversen: Head curve from flow area reduction due to dead water in impeller July 5, 1946

Box 1, Folder 3.15
References and problems for Chapter 2, ME 127

Box 1, Folder 3.16
Miscellaneous pamphlets, newsletters from Byron Jackson, etc. on centrifugal pumps
 a) Design and operating problems of high pressure centrifugal pumping cycles, by Igor J. Karassik, reprint of four articles from National Engineer, July-November 1946
 b) The new Fairbanks-Morse bladeless sewage and trash pump, Fairbanks, Morse Co., Chicago, Ill. 15 p. (Bulletin 5400K-1)
 d) Reference chart to Jenkins figure numbers for evaporator connections, Jenkins Bros., New York
 e) Advertisement for the Foster (Air-Raid) Siren, Foster Engineering Company May 1943
 f) Advertisement for the Motorpump, by Ingersoll-Rand, New York September 1941
 g) Specific speed curves for single stage, centrifugal, mixed flow and axial flow pumps, Hydraulic Institute, New York December 1940
 h) Motor-driven pump competes with water-powered triplex, F-M News, pp. 11-12 May-June 1941
 i) Material from F-M News, p.3-6 re pictures of Fairbanks-Morse Ashland boat, F-M pumps and motors, Sanford Pumping Plant (Fla.), etc. July-August 1941
 j) Upper limits of specific speed for double suction single stage centrifugal pumps, by A. Hollander, Byron Jackson Newsletter, Vol. VI, No. 8 November 1, 1932
 k) Engine-driven centrifugal pipe line pumps, Byron Jackson Newsletter, Vol. X, No. 11 November 1, 1937
 l) Determination of operating points of centrifugal pumps working on pipe lines, Byron Jackson Newsletter, Vol. X, No. 16 March 15, 1938

Box 1, Folder 3.17
a) Discussion of 'Centrifugal-pump performance as a function of specific speed,' by A.J. Stepanoff, by R.G. Folsom January 6, 1943
 b) Advertisements on centrifugal pumps 1941

Box 1, Folder 3.18
Centrifugal-pump performance as a function of specific speed, by A.J. Stepanoff, Transactions of the A.S.M.E., 1943

Box 1, Folder 4.1
Box 1, Folder 4.2

Box 1, Folder 4.3

Box 1, Folder 4.4

Box 1, Folder 4.5

Box 1, Folder 4.6

Box 1, Folder 4.7
Pressure distributions on the vanes of a radial flow impeller, by D.A. Morelli (prepared for presentation to the Heat Transfer and Fluid Mechanics Institute, Stanford University,), 12 l. (typescript) June 1951

Box 1, Folder 4.8

b) Evaluation of a two dimensional centrifugal pump impeller, by John H. Beveridge, and Dino A. Morelli, (prepared for presentation at the Annual Meeting, New York, of the American Society of Mechanical Engineers), 8 l. (ASME Paper no.50-A-147) November 26-December 1, 1950

Box 1, Folder 4.9
Inadequacy of the conception 'The specific number of Revolutions', in the calculations concerning hydraulic turbo-engines, by Benjamin Meisel, Comm. de la Soc. Math. de Kharkof, Ser.4, T.12, pp.115-118 1935

Box 1, Folder 4.10
Blueprints and letters re Byron Jackson pump tests 1932-1939

Box 1, Folder 4.11
Thrust characteristics tabulations, by M. Ruth April 1941

Box 1, Folder 4.12
3 De Laval pump acceptance tests data; blueprints and calculations (handwritten notes)

Box 1, Folder 4.13

Box 1, Folder 4.14

Box 1, Folder 4.15

Box 1, Folder 4.16

Box 1, Folder 5.1
Miscellaneous correspondence between M.P. O'Brien and R.G. Folsom and the Byron Jackson Pump Company, Los Angeles, re impellers, Also includes blueprints 1938-1943

Box 1, Folder 5.2
Blueprints; calculations; brochures on centrifugal pumps, Pacific Pumping Company, Portland and San Francisco 1939

Box 1, Folder 5.3
a) Calculations and blueprints on centrifugal pump efficiencies and specific speeds 1937
b) Tables, correspondence, graphs, etc. re Byron Jackson 12-inch pumps 1937

c) Tabulated data and pump curves, by F. Kinley

Box 1, Folder 5.4
Miscellaneous handwritten calculations on Byron Jackson pumps 1937-1938

Box 1, Folder 5.5
Centrifugal pumps, by Hans Lorenz

Box 1, Folder 5.6
Some types of centrifugal pumps, by Wm. O. Webber, Transactions of the A.S.M.E., Vol.XXVI, pp.764-800 1905

Box 1, Folder 5.7

Box 1, Folder 5.8
Dimensional analysis and the performance of centrifugal pumps and fans, by J. Jennings, The Engineer, pp.614-615 May 19, 1939

Box 1, Folder 5.9
Material on Goulds Pumps, curves and related information

Box 1, Folder 5.10
Miscellaneous notes, tables, charts, etc. on specific speed 1937

Box 1, Folder 5.11
History and development of the Grand Coulee Pumping Plant, by E.B. Moses

Box 1, Folder 5.12

Box 1, Folder 5.13
Predesign investigations of hydraulic features for Grand Coulee Pumping Plant, by G.J. Hornsby

Box 1, Folder 5.14
Development of the hydraulic design for the Grand Coulee pumps, by Carl Blom, Transactions of the ASME, 12 p. (ASME Paper no.49-SA-8) 1949

Box 1, Folder 5.15

Box 2, Folder 6.1
1:4 dredge pump model, Progress report #3: Experimental work made at the Bonneville Hydraulic Laboratory, by A.J. Gilardi June 16, 1936

Box 2, Folder 6.2

Box 2, Folder 6.3
Principles of pumping machinery, by M.P. O'Brien and R.G. Folsom, for M.E.127, Spring semester 1940, University of California, Berkeley dated December 1939

Box 2, Folder 6.4
4 photographs of dredge pump model March 1936

Box 2, Folder 6.5
Abmessungen der Pumpe und besondere Versuchseinrichtungen an der Pumpe, undated

Box 2, Folder 6.6
Potential flow through centrifugal pumps and turbines, by E. Sorensen, National Advisory Committee for Aeronautics, Washington, D.C., 35 p. (NACA Technical memorandum no.973) April 1941

Box 2, Folder 6.7
Contribution to regulation of centrifugal pumps and investigations concerning the theoretical and actual delivery head, by Wilhelm Siebrecht (Verlag, Berlin - Forschungsarbeiten, Number 321), translated by Fred Thompson, University of California, Department of Mechanical Engineering, Berkeley, 50 l. (typescript). (Works Progress Administration Project no.58, Translation no.187) 1929 September 15, 1936

Box 2, Folder 6.8
Alteration of fundamental equations, by C. Pfleiderer (in Die Kreisenpumpen, Berlin, Sections 41-47 Inc.), translated from German by E. Beatrice Barnes, University of California, Department of Mechanical Engineering, Berkeley, 57 l. (typescript). (Works Progress Administration Project No.6090-5070, Translation no.265.) 1932

Box 2, Folder 6.9

Box 2, Folder 6.10
Prediction of performance curves of high speed centrifugal pump runners, by C. Pfleiderer (VDI-Verlag GMBH, Berlin,), translated by N.Y.A., University of California, Department of Mechanical Engineering, Fluid Mechanics Laboratory 1938 1938

Box 2, Folder 6.11
Miscellaneous notes, calculations, and photos of centrifugal pumps 1939-1941

Box 2, Folder 6.12
Determination of delivery load of centrifugal pumps, by Benjamin Meixel, translated by J.W. Cameron undated
Balanced design with double volute case centrifugal pumps, Byron Jackson
Newsletter, Vol.XII, No.21 September1, 1941

The evolution and development of the bladeless sewage and trash pump, by R.C. Glazebrook, Fairbanks, Morse Co., Chicago, Ill. November4, 1949

Delivery head ratios of radial centrifugal pumps with logarithmically spiral blades, by A. Buseman (Zeitschrift für angewandte Mathematik und Machanik, Band 8, Heft 5,), translated by E.B. Barnes, University of California, Department of Mechanical Engineering, Berkeley, 28 l. (typescript).(Works Progress Administration Project No.6090-5970, Translation no.345) Oktober 1928 July 14, 1938

A review of slip factors for centrifugal impellers, by F.J. Wiesner, Transactions of the ASME, pp.558-572 October 1967

Performance of a mixed-flow impeller in combination with a semivaneless diffuser, by Eugene B. Laskin and Milton G. Kofskey, National Advisory Committee for Aeronautics, Washington, D.C., 8 p. (NACA Research memorandum E7C05a) April 4, 1947

Box 2, Folder 8.1
Pressure distributions on the vanes of a radial flow impeller, by D.A. Morelli, prepared for Heat Transfer and Fluid Mechanics Institute, Stanford University, 9 1. Also includes misc. correspondence, and handwritten notes by Iversen June 1951

Box 2, Folder 8.2

Box 2, Folder 8.3

Box 2, Folder 8.4
Head and flow observations on a high efficiency free centrifugal pump impeller, by W.C. Osborne and D.A. Morelli 1949

Box 2, Folder 8.7
Miscellaneous handwritten notes and outline on centrifugal pumps, by R.G. Folsom

Box 2, Folder 8.8
Blueprints of axial thrust characteristics of Pump No.4 at variable clearance and speed; and efficiency and thrust ratio with plain impellers and with impellers with ribs, University of California, Department of Mechanical Engineering, Pump Testing Laboratory undated

Box 2, Folder 8.9

Box 2, Folder 8.10

Box 2, Folder 8.11

Box 2, Folder 9.1
Miscellaneous calculations and design computations for pumps, Peerless Pump No.2 1938-39

Box 2, Folder 9.2
Miscellaneous calculations, blueprints, etc. for Peerless Pump No.1 1938

Box 2, Folder 9.3
Blueprints from the Food Machinery Corp., on ditch pump impeller, standard bowl, bowl vanes, suction manifold, diffuser cone 1938

Box 2, Folder 9.4
Miscellaneous material, correspondence, tables, blueprints, graphs on propeller pumps 1934-36

Box 2, Folder 9.5
Blueprints of Byron Jackson Co. propeller pumps 1925, 1932

Box 2, Folder 9.6
Miscellaneous correspondence, calculations, notes, on Byron Jackson Co. propeller pumps, 1936

Box 2, Folder 9.7
Miscellaneous calculations, curves, notes, etc. on propeller pumps, 1936

Box 2, Folder 9.8
Graphic solution of the problem of design of impellers for propeller pumps, by Charles F. Hains, for Mech. Eng. 199, University of California December 1938

Box 2, Folder 9.9

Series 7. Losses in Centrifugal Pumps 1910-1953

Box 2, Folder 10.1
Principles of pumping machinery, Chapter IV, (Centrifugal pumps), by R.G. Folsom and M.P. O’Brien December 1939

Box 2, Folder 10.2

Box 2, Folder 10.3
Experiments on centrifugal pumps, by Werner Krumnow (unpublished dissertation for degree of doctor-engineer), Translation by Peter Goedewaagen January 16, 1934

Box 2, Folder 10.5
Leakage in capillary seals of hydraulic valves and pumps, by Paul G. Exline, reprinted from *Product Engineering*, April 1946

Box 2, Folder 10.6
Studies of submergence requirements of high-specific-speed pumps, by H.W. Iversen, reprinted from the *Transactions of the ASME*, pp.635-641 May 1953

Box 2, Folder 10.7
Fluid flow friction factors for pipes, valves and fittings, by V.L. Streeter, reprinted from *Product Engineering*, July 1947

Box 2, Folder 10.8
Resistance to rotation of disks in liquids, by A.H. Church and S.A. Gertz, New York University June 1949
Box 2, Folder 10.9 Miscellaneous disk friction material 1950

Friction of flat discs rotated in water, by J.N. LeConte, *Journal of Electricity, Power and Gas*, pp.483-488. Folder also includes related correspondence December 3, 1910

Miscellaneous pamphlets on centrifugal pumps

a1) Carter self-priming centrifugal pumps, Ralph B. Carter Co., Bulletin nc.112 undated
a2) Carter self-priming centrifugal pumps, Ralph B. Carter Co., Bulletin no. 4310 July 1944
c) Gould pumps- priming methods, Goulds Pumps, Inc., Seneca Falls, N.Y., 780-2 June 30, 1941
d) Byron-Jackson double volute case centrifugal pumps, Byron Jackson Co., Los Angeles, Calif undated
e) Goulds Pumps - handy data on power pumping, The Goulds Manufacturing Co., Seneca Falls, N.Y. 1924

Box 2, Folder 10.12 Miscellaneous notes, calculations, comments, etc. re centrifugal pumps 1936

Box 2, Folder 10.13 Vorausbestimmung der Kennlinien schnellaufiger Kreiselpumpen, von C. Pfleiderer, Mit 33 Bildern im Text, Berlin 1938

Box 2, Folder 10.14 Notes on Chapter IV, Spiral casing of centrifugal pumps

Box 2, Folder 10.16 a) Note on hydraulic machinery shock losses, 1922; excerpt from *Aus der Ingenieurforschung*: “Über den Einflub der Lage der Eintrettskenten von Kreispumpenschaufeln und Dauerstandfestigkeit von Stählen,” pp.1505-1506
b) "Pumpen-Spiralgehäuse mit Drallströmung," *Aus der Ingenieurforschung*, pp.391-392 March 1937

Box 2, Folder 10.17 Operation of centrifugal boiler-feed pumps, by Hans Gartmann, reprinted from *Combustion*, January 1941

Box 2, Folder 10.18 Turbulence in centrifugal pumps, by J.W. MacMeeken, *Transactions of the American Society of Mechanical Engineers*, November 30, 1931

Box 2, Folder 10.20 On the influence of finite spacing between blades in radial centrifugal pumps, by Ernst Schmidt, from *Forschung auf dem Gebiete des Ingenieurwesens*, Translated by E.B. Barnes, University of California, Department of Mechanical Engineering, Works Projects Administration Project 11608-C-6, 5 1. (Translation no. 372) January-February 1938

Box 2, Folder 10.21 Flow in spiral casings of water turbines and centrifugal pumps, by Harald Kranz (dissertation approved by the Technical College of Hanover for obtaining the degree of doctor-engineer), 41 1. Translation by Irene Freuder, University of California, Department of Mechanical Engineering July 1934

Box 2, Folder 10.22 Thermodynamic efficiency of centrifugal boiler feed pumps, by I.J. Karassik, reprinted from *Southern Power and Industry*, RP-217 November 1941

Series 8. Disk Friction Stuffing Box and Bearing Losses 1910-1947

Box 2, Folder 11.2 Miscellaneous notes, correspondence re disk friction formulas; chart from Byron Jackson Company. (mostly handwritten)
<table>
<thead>
<tr>
<th>Box 2, Folder 11.3</th>
<th>Journal of Electricity, Power and Gas, Vol.XXV, No. 23, San Francisco, Calif. December 3, 1910</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 2, Folder 11.4</td>
<td>Miscellaneous articles, correspondence, blueprints re shaft seals and stuffing boxes 1940-1947</td>
</tr>
<tr>
<td>Box 2, Folder 11.6</td>
<td>Miscellaneous material: blueprints on centrifugal pumps (energy flow), stuffing box constructions; graphs; Byron Jackson News Letter, - Power balance in a deepwell turbine ; Crane Packing Company advertisement; Stuffingbox for refinery pumps packing vs. mechanical seal, by A. Hollander March 15, 1936 March 1944</td>
</tr>
<tr>
<td>Box 2, Folder 11.7</td>
<td>Notes on bearing losses; outline</td>
</tr>
<tr>
<td>Box 2, Folder 11.9</td>
<td>Some problems in the lubrication of vertical journal bearings, by A.I. Ponomareff, and E.D. Howe, Transactions of the American Society of Mechanical Engineers, 1932</td>
</tr>
<tr>
<td>Box 2, Folder 11.10</td>
<td>Figures for Chapter IV (ME 127); Bulletin no. 64 of American-Marsh Pumping Equipment, Type Q centrifugal pump; Some physical properties of water and other fluids, by R.L. Daugherty, ASME, HYD-57-2 1934</td>
</tr>
<tr>
<td>Box 2, Folder 11.11</td>
<td>Critical speeds of shafts in fluids, by Levi James Knight, Jr., (unpublished Master's thesis), University of California, Department of Mechanical Engineering 1938</td>
</tr>
<tr>
<td>Box 2, Folder 12.1</td>
<td>Propeller pumps and fans, Chapter 5</td>
</tr>
<tr>
<td>Box 2, Folder 12.2</td>
<td>Figures for Chapter 5</td>
</tr>
<tr>
<td>Box 2, Folder 12.3</td>
<td>Design of propeller pumps (Summary), by Morrough P. O'Brien and Richard G. Folsom</td>
</tr>
<tr>
<td>Box 2, Folder 12.5</td>
<td>b) Working papers, notes for preparation of The design of propeller pumps and fans; supplementary parts for addition to the publication</td>
</tr>
<tr>
<td>Box 2, Folder 12.6</td>
<td>The design of propeller pumps and fans, by Morrough P. O'Brien and Richard G. Folsom (Verifax copy)</td>
</tr>
<tr>
<td>Box 2, Folder 12.7</td>
<td>d) Correspondence between A.L. Kimball and R.G. Folsom re above publication</td>
</tr>
<tr>
<td>Box 2, Folder 12.9</td>
<td>Pressure distributions on the blade of an axial flow propeller pump, by D.A. Morelli and R.D. Bowerman, California Institute of Technology, Hydrodynamics Laboratory, Pasadena, Calif., 15 p. (Report no.E-19.2) November 1952</td>
</tr>
<tr>
<td>Box 2, Folder 12.10</td>
<td>Miscellaneous material re Peerless propeller designer information 1937-1939</td>
</tr>
<tr>
<td>Box 2, Folder 12.11</td>
<td>Miscellaneous material, graphs, test data, re propeller pump cavitation limits 1939</td>
</tr>
<tr>
<td>Box 3, Folder 13.3</td>
<td>Performance of centrifugal fans for electrical machinery, by Carl J. Fechheimer, reprinted from paper presented at the Spring Meeting of the American Society of Mechanical Engineers, Cleveland, Ohio May 26-29, 1924</td>
</tr>
<tr>
<td>Box 3, Folder 13.4</td>
<td>What we make: Sturtevant puts air to work - Sturtevant Condensed Catalog Engineering Data, B.F. Sturtevant Company, Hyde Park, Boston, Mass., 200 p. (Catalog no.500) 1945</td>
</tr>
<tr>
<td>Box 3, Folder 13.5</td>
<td>Presentation of centrifugal-compressor performance in terms of nondimensional relationships, by B.E. Del Mar, Transactions of the A.S.M.E., pp.483-490 August 1945</td>
</tr>
<tr>
<td>Box 3, Folder 13.6</td>
<td>Ejectors for solvent recovery operations, by J.R. Shields, ASME, pp.20-29 Spring 1947</td>
</tr>
</tbody>
</table>
Sound measurement test code for centrifugal and axial fans, by the Engineering Committee of National Association of Fan Manufacturers, Detroit, Mich., 7 p. (Bulletin no.104) 1942

Engine supercharging, Aeronautical Review, pp.41-49 September1941

Miscellaneous advertisements, charts, blueprints, articles, on centrifugal pumps and fans

a) Some suggestions on the transmission of compressed air; a critical review of the subject, by Walter S. Weeks, Engineering and Mining Journal, Vol.140, No.10 October1939

b) Experiments and experiences with blowers, by Henry I. Snell, Transactions of the A.S.M.E., Vol.IX

e) A study of the splitting of an air current, by Walter S. Weeks, Clifford H. Gest, and Thomas H. McClelland, American Institute of Mining and Metallurgical Engineers, (Contribution no.54) June 1933

f) The intake orifice and a proposed method for testing exhaust fans, by N.C. Ebaugh and R. Whitfield, Transactions of A.S.M.E., (PTC-56-3) 1934

g) Influence of inlet boxes on the performance of induced-draft fans, by Lionel S. Marks, and E.A. Winzenburger, Transactions of A.S.M.E., (FSP-54-16) 1934

i) Parallel operation of fans, by H.F. Hagen, reprinted from Power, May, January, February, July 1936

j) Centrifugal fans; performance characteristics and methods of testing, by George Samuel Wilson, William Lyle Dudley and Harry John McIntyre, University of Washington, Engineering Experiment Station, Seattle, 39 p. (Engineering Experiment Station Series Bulletin no. 34) March 1926

l) Pulsation of air flow from fans and its effect on test procedure, by Harold F. Hagen, Transactions of A.S.M.E., 1932

a) Correspondence, computations and notes by A.I. Brown to R.G. Folsom 1934

Performance test of ventilating fans, Broadway Low Level Tunnel, Joint Highway District No. 13, State of California, by Hunter Hudson Engineers 1936

The theory of propeller fans, by Morrough P. O'Brien and James E. Gosline, 1 folder (typed and handwritten notes) 1931

Charts for the analysis of ducted fans, by J.F.M. Scholes, Commonwealth of Australia, Council for Scientific and Industrial Research, Division of Aeronautics, Melbourne 1945

Box 3, Folder 13.16
Ducted fans: effect of the straightener on overall efficiency, by G.N. Patterson, Commonwealth of Australia, Australian Council for Aeronautics, Melbourne, 14 p. (Report ACA-9) September 1944

Box 3, Folder 13.17
Ducted fans: high efficiency with contra-rotation, by G.N. Patterson, Commonwealth of Australia, Australian Council for Aeronautics, Melbourne, 44 p. (Report ACA-10) October 1944

Box 3, Folder 13.18
Influence of wall boundary layer upon the performance of an axial flow fan rotor, by Emanuel Boxer, National Advisory Committee for Aeronautics, Washington, D.C., 21 p. (Technical note 2291) February 1951

Box 3, Folder 13.19
Design of an axial flow cooling fan with adjustable inlet guide vanes, (Volume 19 of a series of articles on compressor and fan design, written by German engineers), U.S. Navy Department, Washington, D.C. April 1946

Box 3, Folder 13.20
Experiments with an axial cooling fan blower, by B. Eckert, (Volume 21 of a series of articles on compressor and fan design, written by German engineers), U.S. Navy Department, Washington, D.C. May 1946

Box 3, Folder 13.21
Cooling fan for Daimler Benz 632-Aircraft engine, by B. Eckert, (Volume 18 of a series of articles on compressor and fan design, written by German engineers), May 1946, U.S. Navy Department, Washington, D.C.

Box 3, Folder 14.1
Folder containing material relating to superchargers
a) Letter from Elliott Company (C.F. Harms) to M.P. O’Brien re Elliott-Buchi Turbochargers September 14, 1943
b) Commercial transport pressure cabin aircraft, by Nathan C. Price, Presented at the University of California, Berkeley April 2, 1941
c) Report on a comparison of high altitude supercharging methods as related to engine performance, by Kenneth Campbell and John E. Talbert, Wright Aeronautical Corporation, Paterson, N.J. January 17, 1938
d) Operating principles and lubrication system of the Wright two-speed supercharger, by Allan Chilton and Paul A. Young, Wright Aeronautical Corporation, Paterson, N.J. 1939
e) The comparative performance of Roots type aircraft engine superchargers as affected by change in impeller speed and displacement, by Marsden Ware and Ernest E. Wilson, reprint of Report no. 284 National Advisory Committee for Aeronautics, Washington, D.C., GPO, 1929 April 1928

Box 3, Folder 14.2
Contributions a l'étude experimentale du decollement tournant dans les compresseurs axiaux, par Andre Jaumotte et Simon Goldstein, Universite Libre de Bruxelles, Institut de Mecanique appliquee Fev. 1957

Box 3, Folder 14.3
b) Influence du nombre de reynolds sur les pertes dans les grilles d’aubes, par Andre L. Jaumotte et Pierre Devienne 1957

Box 3, Folder 14.4
Air flow in fan-discharge ducts, by Lionel S. Marks, Transactions of A.S.M.E., pp.871-878. (PTC-56-2) 1934

Box 3, Folder 14.5

Box 3, Folder 14.6
Inlet-air-temperature correction in a Roots supercharger, by F.A. Hiersch, Transactions of A.S.M.E., pp.697-700 August 1943

Box 3, Folder 14.7

Box 3, Folder 14.8
Superchargers for aircraft engines, by R.G. Standerwick and W.J. King, Transactions of A.S.M.E., pp.61-71 January 1944

Box 3, Folder 14.9

Box 3, Folder 14.19: Experimental and theoretical investigations of the flow of air through two single-stage compressors, by J.H. Horlock, Great Britain Ministry of Supply, Aeronautical Research Council, 36 p. (Reports and memoranda no.3031) 1957

Box 3, Folder 14.21: The attenuation method for compressible flow systems, by Leonard Michael Greene (originally issued by Grumman Aircraft Engineering Corporation, March 1943 and revised for presentation Institute of Aeronautical Sciences Meeting) January 1945

Box 3, Folder 14.22: Memoirs of the Faculty of Engineering, University of Nagoya, Vol.1, No.1, Nagoya, Japan April 1949

Box 3, Folder 15.1: Some theoretical aerodynamic investigations of impellers in radial- and mixed-flow centrifugal compressors, by John D. Stanitz, , 75+ l 1951?

Box 3, Folder 15.2: Analysis of tip-clearance flow in turbomachines, by Chung Hua Wu and Wen Wu, Polytechnic Institute of Brooklyn, Gas Turbine Laboratory, Department of Mechanical Engineering, 48 l. (Technical report no.1) July 1954

Box 3, Folder 15.3: Experimental investigation of tip-clearance flow in cascades, by Wen Wu and Clifford A. Wojan, Polytechnic Institute of Brooklyn, Department of Mechanical Engineering, Gas Turbine Laboratory, 19+ l. (Technical report no.2) September 1955

Box 3, Folder 15.4: Techniqua; a journal of instrument engineering, Vol.12, No.2 April 1958

Box 3, Folder 15.5: Le decrochage tournant des machines axiales generatrices monoetages. Lois de similitude, par Simon Goldstein et Andre L. Jaumotte, *Journal de Mathematiques et de Physique Appliquees (ZAMP)*, Vol.VIII, Fasc.3, pp.3-19 1957

Box 3, Folder 15.7: See 14.9

Comparative flight performance with an N.A.C.A. Roots supercharger and a turbocentrifugal supercharger, by Oscar W. Schey and Alfred W. Young, National Advisory Committee for Aeronautics, Washington, D.C., 14 p. (Report no.355) 1930

A collection of compressor test results, by B. Eckert, (Volume 22 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. May 1946

Axial compressor, by W. Encke, (Volume 24 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. May 1946

Analysis of the effects of design pressure ratio per stage and off-design efficiency on the operating range of multistage axial-flow compressors, by Melvyn Savage and Willard R. Westphal, National Advisory Committee for Aeronautics, Washington, D.C., 33 p. (Technical note 2248) December 1950

Possible application of blade boundary-layer control to improvement of design and off-design performance of axial-flow turbomachines, by John T. Sinnette, Jr., and George R. Costello, National Advisory Committee for Aeronautics, Washington, D.C., 32 p. (Technical note 2371) May 1951

Comparison of low-speed rotor and cascade performance for medium-camber NACA 65- (C10A10) 10 compressor-blade sections over a wide range of rotor blade-setting angles at solidities of 1.0 and 0.5, by George C. Ashby, Jr., National Advisory Committee for Aeronautics, Washington, D.C., 40 p. (Research memorandum L54113) December 1954

Experimental investigation of an axial-flow compressor inlet stage operating at transonic relative inlet mach numbers, III - Blade-row performance of stage with transonic rotor and subsonic stator at corrected tip speeds of 800 and 1000 feet per second, by Francis C. Schwenk, Seymour Lieblein and George W. Lewis, Jr., National Advisory Committee for Aeronautics, Washington, D.C., 69 p. (Research memorandum E53G17) September 1953

Box 3, Folder 16.3

Box 3, Folder 16.4

Box 3, Folder 16.5

Box 3, Folder 16.6

Box 3, Folder 16.7

Box 3, Folder 16.8

Box 3, Folder 16.9

Box 3, Folder 16.10

Box 3, Folder 16.11
An electrical dynamometer for the direct measurement of mechanical power, torque and rpm for very high shaft speeds - (A description of the amplifying system and controls is given in Volume 25 of this series), by B. Eckert (Volume 1 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. May 1946

Box 3, Folder 16.12
A temperature measuring device for the exact determination of the internal adiabatic efficiency of a compressor in 2 parts, by B. Eckert, (Volume 2 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. May 1946

Box 3, Folder 16.13
Manufacturing and strength considerations of axial compressors, (Part A, by B. Eckert and S. Mlaker; Part B, by E. Moeck and M. Schilhansl), (Volume 4 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, 63 p. (NavShips 250-338-1) June 1946

Box 3, Folder 16.14
Review of research on gas turbines carried out at D.V.L., Garmisch, (Part a, by H. Kuhl; Part B, by Fritz A.F. Schmidt), (Volume 7 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C., 78 p. (NAVSHIPS 250-338) June 1946

Box 3, Folder 16.15
“Positive displacement rotary compressors (Roots Lysholm types),” (Part A, by B. Eckert and F. Weining; Part B, by B. Eckert and P.H. Heim), (Volume 14 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. April 1946

Box 3, Folder 16.16
Supercharger for aviation engine, FKFS 9-9000VI (D Engine), by B. Eckert in 3 parts, (Volume 16 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. May 1946

Box 3, Folder 16.17
Superchargers for automotive engines, by B. Eckert, (Volume 17 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. May 1946
Box 3

'Matching' of compressor stages and compressors for good part load operation, (Part A by H. Hagen; Part B by Senger), (Volume 8 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. May 1946

Box 3, Folder 16.19

Information on unconventional compressors, (Part A by A. Weise; Part B by B. Eckert; Part C by Pabst von Ohain), (Volume 9 of a series of articles on compressor and fan design by German Engineers), U.S. Navy Department, Washington, D.C. May 1946

Box 3, Folder 16.20

Characteristic numbers for flow machines based on the Newtonian theory of dynamic similarity, by B. Eckert, (Volume 10 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. May 1946

Box 3

The design of 50% reaction compressors and results of tests of individual stages, (Part A by B. Eckert and F. Weinig; Part B by B. Eckert; Part C, by B. Eckert and W. Kobel), (Volume 11 of a series of articles on compressor and fan design written by German engineers), U.S. Navy Department, Washington, D.C. May 1946

Box 3, Folder 16.22

Series 14. Centrifugal Pumps with Viscous Fluid 1933-1953

Box 4, Folder 17.1

Box 4, Folder 17.2

a) References: centrifugal pumps with viscous fluids, by A. Elvitsky for ME 271 Spring 1953

b) References for performance of centrifugal pumps with viscous fluids, by R.G. Folsom October10, 1940

Box 4, Folder 17.3

Some problems in the selection and operation of centrifugal pumps for oil and gasoline pipe lines, by A. Hollander 1941

Box 4, Folder 17.4

General considerations of a proposed investigation of the influence of viscosity on centrifugal pump performance, by Anatole W. Elvitsky April 15, 1953

Box 4, Folder 17.5

"A preliminary report on an investigation of the effects of viscosity on the characteristics of a centrifugal pump, by Horace E. Burrier, for M.E. 219 December2, 1938

Box 4, Folder 17.6

Characteristics of centrifugal pumps with viscous fluids, by R.G. Folsom, 4 p. Folder also includes notes and miscellaneous correspondence re course work on centrifugal pumps and viscous fluids August1938

Box 4, Folder 17.7

Viscosity of oils at high temperatures, by F.L. Maker, for presentation at the Pacific Coast Applied Mechanics Meeting of the A.S.M.E., Pasadena, Calif. January20-21, 1933

Box 4, Folder 17.8

Box 4, Folder 17.9

Miscellaneous material: Victor Kimball-Krogh sand and tailings pumps Bulletin 311; drawings of Kimball Krogh No.6 Dredge pump 1938

Box 4, Folder 17.10

Discussion of Habach paper; correspondence between R.G. Folsom and A. Hollander (Byron-Jackson, 1942) re Meek's thesis on viscosity 1943

Box 4, Folder 17.11

Disk friction - turbulent flow, by Anatole W. Elvitsky April 7, 1953

Box 4, Folder 17.12

Various papers on centrifugal pump characteristics and performance, fluid mechanics laboratories, 1927-1938, compiled by University of California, Department of Mechanical Engineering for Experiment HE-68

Box 4, Folder 17.13

Two blueprints showing pump curves, U.C. Berkeley data undated

Series 15. Jet Pumps 1928-1953

Box 4, Folder 18.1

Harold W. Iversen papers WRCA 081 19

Transport of mementum, mass and heat in turbulent jets, by Lloyd G. Alexander, Thomas Baron, and Edward W. Comings, University of Illinois, Engineering Experiment Station, Urbana. 88 p. (University of Illinois Bulletin, Vol. 50, No. 66, May 1953, and Engineering Experiment Station Bulletin series no.413)

Installation of a centrifugal-jet pump, by J.F. Northrop and R. Rhoda, for M.E.199, University of California, Departments of Electrical and Mechanical Engineering 1943

Folder containing material relating to jet pumps, by Donald J. Rammage, for M.E. 131B, University of California, Department of Mechanical Engineering January-March 1932

Original curves and drawings, by L.A. Ledgett, regarding jet pumps, M-805, for M.E. 131B, University of California, Department of Mechanical Engineering January1933

Telephone message from George Ashbook Company re successful pump test July 23, 1948

Report on the capacity test on the 4S 1937

Second series of tests on the 4S October 1937

Folder containing information on theory pertaining to the jet pump and hydraulic impact - abstracts 1928

b) The water jet pump office copy

Characteristic curves for the water jet pump , by R.G. Folsom (rough draft) May 16, 1945

Blueprints, figures for Chapter VII

Folder containing: H.W. Tversen notes on steam jets or gas jets; *Effect of molecular weight of entrained fluid on the performance of steam-jet ejectors*, by W.C. Holton, ASME Paper no.50-A-114 1951

Folder containing mimeographed information on jet pump performance for area ratio (An/Ad) of.0925 with fixed diffuser restriction, North American Aviation, Los Angeles, (NA-48-904) August 16, 1948

Discussion of 'The Horizontal Carriage of Granular Material by an Injector-Driven Air Stream', by S.A. Wood and A. Bailey, University of California, Berkeley, College of Engineering, Department of Mechanical Engineering, 7 l. (typescript). Folder includes *The horizontal carriage of granular..* 1939

Jet pump as compressor, mimeographed table undated

Report on steam jet pumps (M-805-B), by Carl Edward Watson, for M.E. 131B, University of California, Department of Mechanical Engineering February 1933

General theory of air and water jet pumps, Experiment M-805, January 1933

Injector performance estimate for combination with compressor with recirculation, by Allan W. McCoy, memorandum Brown University, Engineering Division April 27, 1949

See 18.9

Box 4, Folder 20.2
Saggio di Teoria dell'Iniettore Idraulico, by Duilio Citrini, Societa Editrice Riviste Industrie Elettriche, Milano, 19 p. (Memorie e Studi dell'Istituto di Idraulica e Construzioni Idrauliche del Politecnico di Milano No.72) 1948

Box 4, Folder 20.3

Box 4, Folder 20.4
Calculations for Comstock Mine jet pump undated

Box 4, Folder 20.5
Correspondence and notes in re Joshua Hendy design for oil wells 1933

Box 4, Folder 20.6
Blueprints for Pelton Water Wheel Company on jet pumps 1928

Box 4, Folder 20.7
Folder containing material on jet pumps including: *Water jet eductors for lifting liquids*, Schutte Koerting Company, Vol.1, Bulletin no.2-M, correspondence; blueprints; handwritten notes April 1928;

Box 4, Folder 20.8
Miscellaneous material on jet pumps including: "Report on calculations of the jet pump; correspondence, M.P. O'Brien; handwritten notes 1930

Box 4, Folder 20.9
Handwritten notes on the hydraulic jet pump taken from H.H. Bliss thesis undated

Box 4, Folder 20.10
Blueprints, Byron-Jackson jet pump design 1933

Box 4, Folder 20.11
Performance of a modified jet pump, by D.E. Batchman and N.D. Morgan, for ME 131B April-May, 1957

Box 4, Folder 20.12
What's ahead for jet engines and rocket motors in process units?, reprinted from Chemical Engineering, pp.208-211 September 1953

Box 4, Folder 20.13
Jet centrifugal pump performance, by T.A. Ehrisman and W.F. Eaton, for M.E. 131 Special Report, University of California May 1943

Box 4, Folder 20.14
Log book - centrifugal-jet pump, by W.F. Eaton for M.E.131, University of California May 1943

Box 4, Folder 20.15
Jet propulsion and rockets for assisted take-off, by M.J. Zucrow, Transactions of the A.S.M.E, Vol.68, No.3, pp.177-188 April 1946

Box 4, Folder 20.16
Water-jet air pump, by Uriel Yarden, for M.E. 131B, University of California June 1945

Box 4, Folder 20.17

Box 4, Folder 21.1
Mixing of two fluid streams, by J. Vidmar and E. Chiesa, for M.E. 131, University of California May 28, 1943

Box 4, Folder 21.2
Log book - test of a centrifugal-jet pump, by R.A. Rhoda 1939

Box 4, Folder 21.3
Jet centrifugal pump performance, by T.A. Ehrisman and W.F. Eaton, for M.E. 131

Box 4, Folder 21.4
Log book - centrifugal-jet pump, by W.F. Eaton for M.E.131, University of California May 1943

Box 4, Folder 21.5
The jet pump, by J.F. Bishop and C.D. Carroll, for M.E. 131B, University of California April-June 1945

Box 4, Folder 21.6
Water-jet air pump, by Uriel Yarden, for M.E. 131B, University of California June 1945

Box 4, Folder 21.7
Miscellaneous notes on jet pumps undated

Box 4, Folder 21.8
Annular-jet ejectors, by Elliott G. Reid, National Advisory Committee for Aeronautics, Washington, D.C. November 1949

Box 4, Folder 21.9

Box 4, Folder 21.10
Jet propulsion and rockets for assisted take-off, by M.J. Zucrow, Transactions of the A.S.M.E, Vol.68, No.3, pp.177-188 April 1946

Box 4, Folder 21.11
Test of a jet pump, by Leland Rella Balch, University of Wisconsin, 15 p. (Bulletin of the University of Wisconsin No.596, and Engineering Series, Vol.7, No.4, pp.305-320) 1913

Box 4, Folder 21.12
The thrust and drag penalties on a jet engine installation due to cooling flow, by Harold Klein, Douglas Aircraft Company, Inc., Santa Monica, Calif., 14 l. (Report no. SM-13862) November 1950
Analytical solutions for gross thrust change and weight flow ratio due to a jet ejector pump, by N.L. Fox, Douglas Aircraft Company, Inc., Santa Monica, Calif., 27 l. (Report No. SM-13881) December 1950

Steam-jet ejectors, Ingersoll-Rand, New York undated

Contributions to jet pump theory, I. Comparison of ideal mixing processes, by H.B. Helmbold, University of Wichita, School of Engineering, Wichita, 13 l. (Engineering study no.105) June 1953

Contributions to jet pump theory, II. Integral relations on mixing processes, by H.B. Helmbold, University of Wichita, School of Engineering, Wichita, 10 l. (Engineering study no.106) June 1953

Contributions to jet pump theory, III. Simplified theory of mixingzone spreading, by H.B. Helmbold, University of Wichita, School of Engineering, Wichita, 17 l. (Engineering study no.107) July 1953

Contributions to jet pump theory, IV. Approximate theory of jet diffusion in a constant-pressure mixing tube, by H.B. Helmbold, University of Wichita, School of Engineering, Wichita, 25 l. (Engineering study no.118) November 1953

Review of a systematic, theoretical investigation of jet pumps, by H.B. Helmbold, University of Wichita, School of Engineering, Wichita, 13 p. (Engineering study no.122) November 1953

Experimental studies of noise from subsonic jets in still air, by Leslie W. Lassiter and Harvey H. Hubbard, National Advisory Committee for Aeronautics, Washington, D.C., 35 p. (Technical note 2757) August 1952

On steady, laminar, round jets in compressible viscous gases far behind the mouth, by M.Z. Krzywoblocki, Osterreichisches Ingenieur-Archiv, Bd.III, Heft, pp.373-383 4, 1949

Model investigation of mixing streams of air with combustion gases as applied in secondary mixing in gas turbines, by A.K. Oppenheim, Stanford University, Department of Mechanical Engineering November 1949

Transport of momentum, mass, and heat in turbulent jets; summary technical report Part I, by Lloyd G. Alexander, Thomas Baron and Edward W. Comings, University of Illinois, Engineering Experiment Station, Urbana, 143 p. (Technical report no.8) September 1950

Trends in design of fractionating pumps, by Kenneth C.D. Hickman, reprinted from Journal of Applied Physics, Vol.11, No.5, pp.303-313 May 1940

A contribution to the development of jet pumps, by Wagner, Translation by Central Air Documents Office, Navy-Air Force, 21 p. (Translation ATI no.20255) July 1944 March 1949

Air ejector studies, by Albert E. Kipps and Leo Lichtman for M.E. 131B, University of California June 1952

Water-air jet pump experiment; special project, by K.E. Barnhart, Jr. and A.L. Hale, for M.E. 131B, University of California June 1947

Studies on liquid-jet gas pumps, by Yoichi Takashima, Journal of the Scientific Research Institute, Tokyo, Vol.46, No.1295 December 1952
The possible use of turbojet units in the evacuation of a large air filled tank, by R.A. Cornog, Propulsion Research, Inglewood, Calif. July 1951

The possible use of turbojet units in the evacuation of a large air filled tank, by R.A. Cornog, Propulsion Research, Inglewood, Calif. July 1951
Box 5, Folder 25.1 Folder containing material re water hammer, including: Bibliography, water hammer; Chapter 9, "Hydraulic dam, pp.9.1 and 9.2, 9.19A, B, C; miscellaneous charts, graphs, and figures on hydraulic constants, Folsom notes on water hammer 1939; 1947

Box 5, Folder 25.2 Preliminary notes on the phenomenon of surge as observed in open type irrigation pipe distribution systems, by E.H. Taylor and A.F. Pillsbury, University of California, Los Angeles, Department of Irrigation Soils December 1952

Box 5, Folder 25.3 Pelton surge suppressor, by F.H. Rued, The Pelton Water Wheel Co., San Francisco undated

Box 5, Folder 25.4 Pelton surge suppressors - for safeguarding waterworks flow lines against damage from sudden changes in pressure, The Pelton Water Wheel Company, 7 p. (Bulletin no.41) 1948

Box 5, Folder 25.5 Investigation of surge phenomena by means of model experiments, by W.F. Durand, Western Engineering, December 1913

Box 5, Folder 25.6 "Das Wasserschloss bei Hochdruckspeicheranlagen unter besonderer Ber, ucksichtigung des Kammerwasserschlosses mit Uberfall," by Otto Streck, Berlin 1929

Box 5, Folder 25.7 Etude theorique et experimentale sur les coups de belier dans les conduites forces; rapports, de E. Jouguet, A. Rateau, et de Sparre, Paris, H. Dunod E. Pinat, Editeurs, Paris 1917

Box 5, Folder 25.8 Oscillations in closed surge tanks, by A.M. Binnie, in Journal of Applied Mechanics, Vol.10, No.4, pp.183-186 December 1943

Box 5, Folder 25.9 Conditions for the stability of surge chambers, by Fredrik Jonson, translated by SERA, University of California, Berkeley, Department of Mechanical Engineering March 24, 1928

Box 5, Folder 25.10 Comparison and limitations of various water hammer theories, by Ray S. Quick, preprinted from Mechanical Engineering, 1927

Box 5, Folder 25.11 Theory of water-hammer, by Lorenzo Allievi, translated by Eugene E. Halmos, Typography Riccardo Garroni, Rome 1925

Box 5, Folder 25.12 Etude des variations de regime dans les conduites d'eau, by L. Bergeron, Revue Generale de l'Hydraulique, Paris 1935

Box 5, Folder 25.15 Some experiments and calculations on the resurge phase of water hammer, by Joseph N. LeConte, reprinted paper from Aeronautic and Hydraulic Divisions, American Society of Mechanical Engineers, Summer Meeting June 19-21, 1934

Box 5, Folder 25.16 Notes on water hammer-linetic energy in pipe flow, by J.N. Nikuradse 1934

Box 5, Folder 25.17 Water hammer control, by S. Logan Kerr, in Journal of A.W.W.A., Vol.43, No.12, pp.985-999 December 1951

Box 5, Folder 25.18 Pump discharge valves on the Colorado River Aqueduct, by R.M. Peabody, in Transactions of A.S.M.E., September 1939

Box 5, Folder 25.19 Comparisons between calculated and test results on water hammer in pumping plants, by O. Schnyder, reprinted from Transactions A.S.M.E., pp.695-700 November 1937

Box 5, Folder 25.20 a) Water-hammer pressures in compound and branched pipes, by Robert W. Angus, American Society of Civil Engineers Papers, pp.133-169 January 1938

Box 5, Folder 25.21 b) Kreitner's diagram for water-hammer problems, by Robert W. Angus, Mechanical Engineering pp.781-782 1935?

Box 5, Folder 25.22 New aspects of maximum pressure rise in closed conduits, by S. Logan Kerr, Transactions of A.S.M.E, pp.13-30. (HYD-51-3) 1928
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 5, Folder 27.1</td>
<td>Air chambers and valves in relation to water hammer, by R.W. Angus, in Transactions of the A.S.M.E., pp.661-668. (HYD-59-8) 1937</td>
</tr>
<tr>
<td>Box 5, Folder 27.2</td>
<td>Air chambers for discharge pipes, by Lorenzo Allievi, in Transactions of the A.S.M.E., pp.651-668. (HYD-59-7) 1937</td>
</tr>
<tr>
<td>Box 5, Folder 27.3</td>
<td>Water hammer in pipes, including those supplied by centrifugal pumps: graphical treatment, by Robert W. Angus, Institution of Mechanical Engineers 1936</td>
</tr>
<tr>
<td>Box 5, Folder 27.4</td>
<td>Pump, Patent no.1,730,337, by Toribio Bellocq, Buenos Aires, Argentina. Application filed August 30, 1928</td>
</tr>
<tr>
<td>Box 5, Folder 27.5</td>
<td>Water hammer problems in connection with the design of hydroelectric plants, by E.B. Strowger, in Transactions of the A.S.M.E., pp.377-392 1944</td>
</tr>
<tr>
<td>Box 5, Folder 27.6</td>
<td>Water-hammer analysis by the Laplace-Mellin transformation, by G.R. Rich, in Transactions of the A.S.M.E., pp.361-376 1945</td>
</tr>
<tr>
<td>Box 5, Folder 27.7</td>
<td>Charts for designing air chambers for pump discharge lines, by W.E. Evans and C.C. Crawford, in Proceedings of the A.S.C.E., Vol.79 September 1953</td>
</tr>
<tr>
<td>Box 5, Folder 27.8</td>
<td>Elements of graphical solution of water-hammer problems in centrifugal-pump systems, by A.J. Stepanoff, reprinted from the Transactions of the A.S.M.E., pp.515-534 July 1949</td>
</tr>
<tr>
<td>Box 5, Folder 27.9</td>
<td>Pressure surges at large pump installations, by J. Parmakian, American Society of Mechanical Engineers, N.Y., N.Y. 1952</td>
</tr>
<tr>
<td>Box 5, Folder 27.10</td>
<td>Water hammer in pipe lines; studies extended to include effects of imperfect reflection at discharge end, friction, non-uniform change of valve opening and imperfect action of discharge opening as a nozzle, by W.F. Durand, Engineering News-Record, Vol.85, No.26, pp.1212-1216 December 23, 1920</td>
</tr>
<tr>
<td>Box 5, Folder 27.11</td>
<td>See 26.12</td>
</tr>
<tr>
<td>Box 5, Folder 27.12</td>
<td>An extension of the theory of water hammer, by R. Skalak, American Society of Mechanical Engineers, N.Y., N.Y. April 1955</td>
</tr>
<tr>
<td>Box 5, Folder 27.13</td>
<td>a) Water hammer, by N. Joukovsky, translated by O. Sinnin 1898</td>
</tr>
<tr>
<td>Box 6, Folder 27.14</td>
<td>Water hammer investigation, by Gosline, Deming, Trolese, Schullerts, Coit, Kirchhoff, McGlynn March 1930</td>
</tr>
<tr>
<td>Box 6, Folder 27.15</td>
<td>Notes on 2" water hammer experiments, including: original data, computed data, oscillograph films and pictures, and notes of Prof. LeConte, prepared by L. Laine April 1934</td>
</tr>
</tbody>
</table>

Series 24. Water Hammer, Chapter 9 1918-1948

Box 6, Folder 28.1 | Folder containing articles in re water hammer: Longitudinal wave transmission and impact, by L.H. Donnell, ASME Paper APM-52-14 1930 Photocopy of Chapter XIV-(Section E), Hydraulic Ram, from The control of Water, by P.M. Parker Effect of speed regulation and water hammer on the design of relief valves, penstocks and surge tanks, Hydraulic Power Committee 1926-27 Graphical records of surge pressures in pipe lines, by R. Bennett, Engineering News-Record, Vol.82, No.22. pp.1048-1216 The calculation of pressure surges in pipelines, by P. de Haller June 1929 |
Note sur le calcul du coup de belier dans les conduites sous pression, par Ed. Carey 1918

Box 6, Folder 28.2
Folder containing articles in re pumping-theory-water hammer:
- Complete characteristics of centrifugal pumps and their use in the prediction of transient behavior, by R.T. Knapp, ASME, HYD-59-11 1937
- Pompes centrifuges et usines elevatoires, par M.L. Bergeron 1935

Box 6, Folder 28.3
Folder containing miscellaneous publications on water hammer, pumps:
- Methods employed to remedy water-hammer shock in pumping systems, by E.B. Ball, ASME 1937
- The application of Heaviside's operational calculus to the solution of problems in water hammer, by F.M. Wood, ASME Paper HYD-59-15 1937
- Oscillations in closed surge tanks, by A.M. Binnie, ASME 1943
- Speed of water-hammer pressure wave in transite pipe, by L.H. Kessler, ASME 1937
- Theory of resonance in pressure conduits, by C. Jaeger, ASME 1937
- Typical analysis of water hammer in a pumping plant of the Colorado River Aqueduct, by R.M. Peabody, ASME 1937
- Discussion on experiments and calculations on the resurge phase of water hammer, by J.N. LeConte, ASME Paper HYD-59-12 1937
- Letter of July 31, 1940, to Prof. M.P. O'Brien from W.W. Helbush, San Francisco Public Utility Commission, containing pump notes on surging in pumplines, with attached charts

Box 6, Folder 28.4
Folder containing miscellaneous notes, translations, abstracts, etc. on water hammer, acoustic waves, surges 1909-1910, 1917, 1928-1929

Box 6, Folder 28.5
Transactions of the American Society of Mechanical Engineers, Vol.59, No.8, ; includes papers from the 1937 Annual Meeting of ASME. pp.647-758 November1937

Box 6, Folder 28.6
Symposium on water hammer, arranged by the A.S.M.E. Committee on Water Hammer for presentation at the Palmer House on during Engineering Week at a Century of Progress Exposition, Chicago, Ill. June 30, 1933

Box 6, Folder 28.7
Supplement to the report of the A.S.M.E. Committee on Water Hammer, A.S.M.E.

Box 6, Folder 28.8
The occurrence and elimination of surge or oscillating pressures in discharge lines from reciprocating pumps, by H. Diederichs, and W.D. Pomeroy, ASME Paper PET-51-2, pp.9-49 1929

Box 6, Folder 28.9

Series 25. Hydraulic Ram, ME 127 - Chapter 9 1929-1945

Box 6, Folder 29.1
Review of literature on water hammer, table of periodical literature reviewed, by R.I. Hess 1945

Box 6, Folder 29.2
The hydraulic ram, by M.P. O'Brien and J.E. Gosline, University of California, Publications in Engineering 1933

Box 6, Folder 29.4
A perpetual water supply without fuel, oil or repairs, advertisement from Rife Hydraulic Engine Manufacturing Company, New York 1929

Box 6, Folder 29.5
Photocopy of Chapter XIV-(Section E), Hydraulic Ram, taken from Control of water. pp.842-853

Box 6, Folder 29.7
Experiment H-17, Hydraulic ram, University of California, Hydraulic Laboratory undated
Box 6, Folder 30.1 Figures 24-33 and Runs of Film - illustration for O'Brien and Gosline hydraulic ram 1933
Box 6, Folder 30.3 Hydraulic ram test; party report, by E.Y Soomil and R.P. Work, for ME 131, University of California April 1935
Box 6, Folder 30.4 Hydraulic ram test calculations, by E.Y Soomil, for ME 131B, University of California April 1935
Box 6, Folder 30.5 Hydraulic ram test, by Raymond P. Work, for ME 131B, University of California April 1935
Box 6, Folder 30.6 Notes for Hydraulic Ram HE-14, by Fred Sperber April 1935
Box 6, Folder 30.7 Notes for Hydraulic Ram HE-14, includes working sheets by Soomil and Work April 1935
Box 6, Folder 30.8 Hydraulic ram data, August 1931

Series 27. Rotary Pumps 1891-1968

Box 6, Folder 31.1 Folder containing types of positive displacement pumps; descriptions, advertisements, figures, papers, articles 1931-1946
Box 6, Folder 31.2 Rotary pumps for light liquids, by William J. McGraw, for M.E. 127, University of California May 1942
Box 6, Folder 31.3 Utility of variable-displacement oil-pressure pumps for hot-pressing in plywood operations, by Elek K. Benedek, Transactions of ASME, pp.89-95. (WDI-56-2) 1933
Box 6, Folder 31.4 "The piston-crosshead motion of the oilgear pump,' by Elek Benedek, Transactions of ASME, pp.85-90. (APM-51-9) undated
Box 6, Folder 31.5 Frequency response of positive-displacement variable-stroke fuel pump, by Harold Shames, Seymour C. Himmel and Darnold Blivas, National Advisory Committee for Aeronautics, Washington, D.C. 1950
Box 6, Folder 31.6 Some characteristics of rotary pumps in aviation service, by R.J.S. Pigott, Transactions of the A.S.M.E., pp.615-623 October 1944
Box 6, Folder 31.7 Gear pump vapor-lock characteristics, by Norman K. Dewhurst, for M.E. 131, University of California May 1943
Box 6, Folder 31.8 Thermodynamics of boiler feeding, by Igor J. Karassik, Hydraulic Institute, New York
Box 6, Folder 31.9 On the suction of volumetric pumps, by S. Kikitine, C.R. Academy of Sciences, Paris, translated by A. Dugas 1935
Box 6, Folder 31.10 Influence of oil compressibility on speed characteristics of hydraulic high-speed presses, by Walter Ernst, prepared for presentation at the Buffalo Section Meeting of A.S.M.E. October 3, 1932
Box 6, Folder 31.11 Vakuumkompressorn, by John Ekelöf, Teknisk Tidskrift, pp.45-50 April 1930
Box 6, Folder 31.12 Performance of a Worthington pumping engine, by J.E. Denton, Transactions of A.S.M.E., pp.975-1013 1891
Box 6, Folder 31.14 Folder containing material re reciprocating pumps theory, includes:
Letter (copy) of to D.R.A. Jones, Southern California Gas Company, from R.G. Folsom, acknowledging gear pump data June 6, 1942
Problems for M.E. 121 - Page 69
Pump requirements for heavy liquids, Power Plant Engineering, (viscosity table) February 15, 1931
The occurrence and elimination of surge or oscillating pressures in discharge lines from reciprocating pumps, by H. Diederichs and W.D. Pomeroy, ASME PET-51-2 1929
Box 6, Folder 31.15 Folder containing notes and diagrams on the piston pump; M.E. 127 problems undated
Box 6, Folder 32.1 Articles on pumping, published by the American Society of Mechanical Engineers: Performance criteria for positive-displacement pumps and fluid motors, by W.E. Wilson, (48-SA-14) 1948
Rotary pump theory, by W.E. Wilson 1945
Some characteristics of rotary pumps in aviation service, by R.J.S. Pigott 1944

Effect of aeration on gear-pump delivery and lubrication ceiling, by P.H. Schweitzer 1944

Power consumption of boiler-feed pumps, by K.A. Mayr, (FSP-50-44) 1944

Proposed expressions for Roots' Supercharger Design and efficiencies, by F.A. Hiersch 1943

“The modern hydraulic reservoir: how it provides micron-range filtration and pump supercharging, by W.W. Thayer 1943

High- and low-pressure airplane hydraulics in Europe, by J. Mercier 1943

Problems in modern deep-well pumping, by C.J. Coberly, (PME-60-2) 1938

Determination of the rate of discharge in jerk-pump fuel-injection systems, by K.J. Dejuhasz, (OGP-60-2) 1938

Plunger lift for pumping deep wells, by H.W. Fletcher, (PME-58-1) 1936

Effect of aeration on gear-pump delivery and lubrication ceiling, by P.H. Schweitzer 1944

Power consumption of boiler-feed pumps, by K.A. Mayr, (FSP-50-44) 1944

Proposed expressions for Roots' Supercharger Design and efficiencies, by F.A. Hiersch 1943

“The modern hydraulic reservoir: how it provides micron-range filtration and pump supercharging, by W.W. Thayer 1943

High- and low-pressure airplane hydraulics in Europe, by J. Mercier 1943

Problems in modern deep-well pumping, by C.J. Coberly, (PME-60-2) 1938

Determination of the rate of discharge in jerk-pump fuel-injection systems, by K.J. Dejuhasz, (OGP-60-2) 1938

Plunger lift for pumping deep wells, by H.W. Fletcher, (PME-58-1) 1936

Some characteristics of rotary pumps in aviation service, by R.J.S. Pigott 1944

Effect of aeration on gear-pump delivery and lubrication ceiling, by P.H. Schweitzer 1944

Power consumption of boiler-feed pumps, by K.A. Mayr, (FSP-50-44) 1944

Proposed expressions for Roots' Supercharger Design and efficiencies, by F.A. Hiersch 1943

“The modern hydraulic reservoir: how it provides micron-range filtration and pump supercharging, by W.W. Thayer 1943

High- and low-pressure airplane hydraulics in Europe, by J. Mercier 1943

Problems in modern deep-well pumping, by C.J. Coberly, (PME-60-2) 1938

Determination of the rate of discharge in jerk-pump fuel-injection systems, by K.J. Dejuhasz, (OGP-60-2) 1938

Plunger lift for pumping deep wells, by H.W. Fletcher, (PME-58-1) 1936

The reciprocating dry-vacuum pump, by W.S. Weeks and P.E. Letchworth 1928

Fuel injection pumps, Diesel Power and Transportation, pp.989-996 November 1938

The gear-wheel pump; a displacement-force analysis, by William H. Rasche, Bulletin of the Virginia Polytechnic Institute, Vol.XXXVIII, No.11, 19 p. (Engineering Experiment Station Series no.61) September 1945

Notes from Hydraulics of fuel injection pumps for compression-ignition engines, NACA Report no.396 1931

Notes on valves for reciprocating pumps; includes figures, photocopies 1943

Fuel systems and accessories, Diesel Power and Transportation, pp.980-988 November 1938

Test of a rotary pump, by W.B. Gregory, Transactions of A.S.M.E., 1906

Rotary pumps, by J.T. Wilkin, Transactions of A.S.M.E., 1902

Positive displacement pump and motor, by R.G. Folsom August 1940

High-pressure gear pumps, by T.E. Beacham, Engineering, pp.284-286, 310-312 March 22, 1946

Product Engineering reprints; pump diagrams from The Engineer Folder includes: 1949

Method of evaluating test data aids design of rotary pumps, by W.E. Wilson October 1945

Design analysis of rotary pumps to obtain maximum efficiency, by W.E. Wilson February 1946

Graphical method for analyzing hydraulic pump and motor data, by O.E. Teichmann March 1946

Helpful hints that insure good rotary-pump performance, by Darwin F. Schaub, reprinted from Power, March 1943

Material on rotary pumps including Illustrations, Chapter 10; notes on displacement pumps; notes on discharge stroke, for M.E.127 1937

Folder containing illustrations for M.E.127, on cross-section of positive displacement pumps; References undated

Series 28. Compressed Air 1908-1951

Compressor explosions; an explanation, by Walter S. Weeks, Engineering and Mining Journal, December 1937

Clearance pockets for transmission line compressors, by Harry J. Smith, G A S, pp.36-40 August 1936

Performance of a large blowing engine, by N.L. Stewart, ASME October 1931

Transmission of power in compressed gas atmospheres, by H.M. Hobart, reprinted from the Journal of the Franklin Institute, Vol.234, No.3, pp.251-354 September 1942
Box 6, Folder 33.3 Cooling effect of compressed air when freely expanded, by W.S. Weeks, American Institute of Mining and Metallurgical Engineers, 6 p. (Technical publication no.793) 1937

Box 6, Folder 33.5 Miscellaneous articles on compressed air, air measurement
Measuring volumes of low-pressure air, by E.H. Oneal and C.T. Todd, Engineering and Mining Journal, August 14, 1926
A study of temperature in a two-stage air compressor, by W.S. Weeks, C.F. Milisich, and H. LeC.Berteaux, Engineering and Mining Journal, May 9, 1925
Leakage in compressed-air lines, by Theodore Simons, Engineering and Mining Journal, March 18, 1922
A method for measuring leakage in compressed air lines, by W.S. Weeks, Engineering and Mining Journal, January 7, 1922
The hydraulic air-compressor, by A.E. Chodzko, Mining and Scientific Press, December 16, 1916
Efficiency of compressed-air installations-I, by T. Simons December 16, 1916
Efficiency of air compressors and the measurement of air flow, by J.H. Rider, The Engineering and Mining Journal, June 26, 1915
Measuring compressed air for cost distribution, by B.B. Hood, Engineering and Mining Journal, June 27, 1914
Expansion joint for pipe lines, by C.L. Edholm, Engineering and Mining Journal, May 25, 1912
Apparatus for testing air consumption of rock drills, drawing undated
Measuring low-pressure air, by G.S. Weymouth, Mining and Scientific Press, April 20, 1912
Operation of air-compressors, by E.A. Rix, Mining and Scientific Press, January 6, 1912
A device for making wedges, by E. Jacobs, Engineering and Mining Journal, October 21, 1911
Compressing air by water, by G.C. McFarlane, Mining and Scientific Press, February 19, 1910
Compressed air calculation short cuts, by S.B. Redfield, Engineering and Mining Journal, December 11, 1909
Simple problems in air-compression, by E.A. Rix, Mining and Scientific Press, March 21, 1908

Box 6, Folder 33.6 Miscellaneous articles from Engineeringre compression
Dry compression in refrigerating plants, by J. and E. Hall, Limited, Dartford; June 26, 1942
The compression and expansion of air, by A.L. Egan June 5, 1942
(Letters to the Editor regarding Some Temperature effects with compressed air, by A.L. Egan) July 4, 1941, June 20, 1941
Some temperature effects with compressed air, by A.L. Egan June 6, 1941
Rapid discharge of gas from a vessel into the atmosphere, by E. Giffen August 23, 1940

Box 6, Folder 33.7 a) Photocopy of article, A constant-volume pump for circulating gases, by I.E. Puddington, Industrial and Engineering Chemistry, Vol.17, no.9 undated
b) The Lindner Formula for self-operating pump valves, by O. Lutz September 1930
c) Variable compressor clearance ; The exponent of compression, The Oil and Gas Journal, April 22, 1944

Box 6, Folder 33.8 Letter, advertisement, from Gast Manufacturing Corporation, Benton Harbor, Mich 21, 1944

Box 6, Folder 33.9 Roots vacuum pumps, P.H. F.M. Roots Company, Connersville, Ind, 16 p. (Catalogue 48) undated

Box 6, Folder 33.10 Symposium of papers on compressed air, reprinted from the Journal of the Institution of Certificated Engineers, South Africa May 1950 to September 1950
Box 6, Folder 33.11
Box 6, Folder 33.12
Miscellaneous papers on compressed air

Proposed expressions for Roots' supercharger design and efficiencies, by F.A. Hiersch, ASME June 1943
Experiments on the flow of air through engine valves, by E.S. Dennison, T.C. Kuchler, and D.W. Smith, ASME Paper OGP-53-6 June 1931
Air compression with temperatures above adiabatic, with special reference to airplane superchargers, by S.A. Moss, ASME Paper AER-55-5 June 1932
Calculation of flywheels for air compressors, by H.R. Goss and H.V. Putnam, ASME Paper APM-51,12 May 1929

Box 6, Folder 33.13

Box 6, Folder 33.14
Plain talks on air and gas compressors, Worthington Pump and Machinery Corporation, Harrison, N.J. 3 v. (in 1 folder). (First, Second, and Third of a series)

Box 6, Folder 33.15
Correspondence To the manufacturers, distributors, and users of tank mounted air compressors, CS126-45, from I.J. Fiarchild, Chief, Division of Trade Standards, U.S. National Bureau of Standards December 5, 1945

Box 6, Folder 33.16
Trade standards (adopted by Compressed Air Institute, (Fifth Edition), Compressed Air Institute, New York 1938

Box 6, Folder 33.17
Sizing pipe for compressed air, by J.M. Bartholomew, Power, May 1938

Box 6, Folder 33.18
Principles of foundation design for engines and compressors, by W.K. Newcomb, reprinted from the Transactions of the ASME, pp.307-312 April 1951

Box 6, Folder 34.1
Large Humphrey pumps for Australia, reprinted from The Engineer, December 21, 1923

Box 6, Folder 34.2
Type W pumps, advertising brochure of the Humphrey Gas Pump Co., Syracuse, N.Y undated

Box 6, Folder 34.3
The Humphrey gas pump; a review of the development and present status of a device for pumping water by displacement, by F. du P. Thomson, Mechanical Engineering, pp.337-340 June 1934

Box 6, Folder 34.4
Spectacular pumping installations..., by F.C. Eibell, reprinted from Mill Factory Illustrated, August 1930

Box 6, Folder 34.5
Selection of pumps for chemical service, by Ward E. Pratt, reprinted from Industrial and Engineering Chemistry, Vol.31, pp.408-415 April 1939

Box 6, Folder 34.6

Box 6, Folder 34.7
a) Certain aspects of high-pressure centrifugal pumping cycles, by I.J. Karassik, ASME April 3-5, 1944
b) High pressure boiler-feed pumps - I and II, by I.J. Karassik, Worthington Pump and Machinery Corp. March, May 1941
c) Centrifugal pumps for process use, by A.T. Nielsen, Worthington Pump and Machinery Corporation March 1942

Box 6, Folder 34.8
a) Submersible motors for deep-well pumping, Byron Jackson Newsletter, Vol.XII, No.1 November 1, 1940
b) Installs pump-motor 664 ft. below ground surface, Byron Jackson Newsletter, Vol.XII, No.12 April 15, 1941

Box 6, Folder 34.9
Selection and rating of oil well pumping units, by Bowman Thomas n.d

Box 6, Folder 34.10
University of California pump-testing laboratory, by Richard G. Folsom, Mechanical Engineering, pp.301-305 April 1938
Box 6, Folder 34.11
Report on electrical submergible-motor centrifugal pumps for oil-well pumping, submitted by B.H. Hellier, for M.E. 127, University of California May 2, 1942

Box 6, Folder 34.12
Letter of to R.G. Folsom from G.C. Schneider (Barrett, Haentzens Company) re vertical pumps March 5, 1945

Box 6, Folder 34.13
Letter of to M.P. O'Brien from M.E. Walters, re sand pumps; including drawing March 4, 1937

Box 6, Folder 34.14
a) "Bibliography of paper making, by C.J. West, for M.E.127, University of California 1928-1935,"
b) Hydraulic problems of the pulp and paper industry, by M.L. Edwards, ASME September 1940
c) Design of hydraulic machinery for modern production demands, by R.W. Andrews, Jr., ASME April 23, 1940

Box 6, Folder 34.15

Box 6, Folder 34.16
Turbines and pumps for pump-fed power storage plants, by A. Mass, Escher Wyss News, Vol.3, No.3. pp.52-61 July-September 1930

Box 6, Folder 34.17
Development of special pumps for liquid metals., by Edward F. Brill, Mechanical Engineering, pp.369-373 May 1953

Box 7, Folder 35.1
Miscellaneous references, includes: Gas engine test, Massachusetts Institute of Technology May 1929

Box 7, Folder 35.2
Thesis on turbulence, by G.F. Djerig, Iowa Institute of Hydraulic Research February 1935

Box 7, Folder 35.3
Slurry; rheology; suspensions (R.G. Folsom) 1928-1935

Box 7, Folder 35.4
Folsom correspondence on various articles

Box 7, Folder 35.5

Box 7, Folder 35.6
Flow of suspension through pipes, Eng. Ind. Chem., 1939

Box 7, Folder 35.7
a) Letters from R.T. Hancock to R.G. Folsom, re: Transportation of sand in pipe lines, June 1938

Box 7, Folder 35.8
b) The Law of motion of particles in a fluid, by R.T. Hancock, The Institution of Mining Engineers July 21, 1937

Box 7, Folder 35.9

Box 7, Folder 35.10
Recent results in the investigation of turbulence, by L. Prandtl, Zeitschrift des Vereines Deutscher Ingenieure, Bd.77, Nr.5, pp.105-114 4 Februar 1933

Box 7, Folder 35.11
Viscosity of coal-ash slags, by P. Nicholls, and W.T. Reid, Transactions of A.S.M.E., pp.141-153 February 1940

Box 7, Folder 35.12
The flow of drilling mud, by H.N. Herrick n.d

Box 7, Folder 35.13
Experimental study of loss of head in a closed pipe carrying clay slurry, by Charles Hanocq, Transactions of A.S.M.E., pp.75-78. (HYD-51-8) February 1928

Box 7, Folder 35.14
Notes on pumping clay slurry in 4 cast iron pipe 1928

Box 7, Folder 35.15
Flow characteristics of fluid-fine particle mixtures, by Scott Walker, unpublished thesis for Master of Science from the Massachusetts Institute of Technology, Notes on selected pages 1940

Box 7, Folder 35.16
Dirt patterns on walls, by R.A. Nielsen, reprinted from Heating, Piping and Air Conditioning, v.12, pp.389-394 1940

Box 7, Folder 35.17
Separation of dust from gases by centrifugal force, by Frank Wills, in Advance Reports - Pacific Coast Gas Association, pp.2-4 undated

Box 7, Folder 35.18

Box 7, Folder 35.19
Nomogram for the settling velocity of spheres, by Hunter Rouse, Exhibit D of the Report of the Committee on Sedimentation, National Research Council, pp.57-64 1936-1937, October 1937
Box 7, Folder 35.14
The coefficient of resistance as a function of Reynolds number for solids of various shapes, by Hakon Wadell, reprinted from the *Journal of the Franklin Institute*, Vol.217, No.4, pp.459-490 April 1934

Box 7, Folder 35.15

Box 7, Folder 35.16
Some new sedimentation formulas, by Hakon Wadell, reprinted from *Physics*, Vol.5, No.10, pp.281-291 October 1934

Box 7, Folder 35.17
Material on slurry reports, tables, laboratory experiments 1930

Box 7, Folder 35.18

Series 31. Transportation of Sand in Pipes 1935-1939

Box 7, Folder 36.1

Box 7, Folder 36.2
Final report on transportation of sand in pipe lines, U.S. Tidal Model Laboratory, University of California, Berkeley June 5, 1935

Box 7, Folder 36.3
Transportation of sand and gravel in a four-inch pipe, by G.W. Howard, ASCE, Includes discussion by M.P. O'Brien and R.G. Folsom 1938

Box 7, Folder 36.4
Miscellaneous letters, notes, graphs, re silt, settling velocities

Box 7, Folder 36.5
Correspondence and notes to and from Morris Machine Works 1937-1938

Box 7, Folder 36.6

Series 32. Dredge Pumps 1914-1948

Box 7, Folder 37.1
Experiments on the mechanics of sediment suspension, by Hunter Rouse, reprinted from *Proceedings of the Fifth International Congress for Applied Mechanics*, 1938

Box 7, Folder 37.2
Pencilled notes and drafts of water and sand curves, by C.K. Bagley 1939

Box 7, Folder 37.3
Power requirements for hydraulic dredging and the transportation of sand in pipelines; preliminary report, by H.K. Armstrong, U.S. War Department, Office of the Chief of Engineers August 1940

Box 7, Folder 37.4
Material on dredge pumps including blueprint data on performance of hydraulic dredges; and accompanying letter from R.L. Faughn (Guy F. Atkinson, George Pollock Company) 1942

Box 7, Folder 37.5

Box 7, Folder 37.6
Operation of pipeline dredges, Multnomah and Wahkiakum in the Columbia River, by Walter H. Russell, October 1938

Box 7, Folder 37.7

Box 7, Folder 37.8
National Bureau of Standards report on tests of dredge suction booster, Washington, D.C. December 1941

Box 7, Folder 37.9

Box 7, Folder 37.10
Contribution to the study of dredging and the pumping of material in the form of mixtures, by P. Durepaire 1939

Box 7, Folder 37.11
Considerations physiques sur L'Influence des Corps en Suspension Dans L'eau Das Les Turbo-Machines Hydrauliques. (Physical considerations on the influence of suspended bodies in water in hydraulic turbines and pumps), by J.E. Immergluck 1948

Box 7, Folder 37.11
Letter of to R.G. Folsom from W.P. Berggren, with abstract of *On the flow of suspensions through narrow tubes*, by F.J. Dix and G.W.S. Blair October 28, 1940

Box 7, Folder 37.11
Fort Peck data: pumps, pump lines information regarding hydraulic dredges (2.c.); daily reports 1936, 1937?);
Series 32. Dredge Pumps 1914-1948

Box 7, Folder 37.12
Dredging by the hydraulic method, Bulletin 644 of the Ellicott Machine Corporation 1936

Box 7, Folder 37.13
Hydraulic pipe line dredges of small and medium size, Bulletin 660 of the Ellicott Machine Corporation 1938

Box 7, Folder 37.14
Material on dredge pumps including: diagram, patent information on ball joint for pipe lines, O.C. Goeriz, method and apparatus for hydraulic dredging May 1933; September 1925

Box 7, Folder 38.1
Folder containing article, 900 tons of sand pumped daily, from The Dragon; and blueprints on centrifugal dredge pumps, U.S. Eng. Office, Portland, 1914

Box 7, Folder 38.2
Extra copies of prints and photostats, HE 66 correspondence 1939-1940; 1941

Box 7, Folder 38.3
a) More profit from suction dredges, by R.L. Vaughn, Engineering News-Record, pp.50-54 February 29, 1940
b) Measuring velocities in dredge pipes; salt-velocity method applied to pipe lines transporting solids, by George W. Howard, Mechanical Engineering, pp.287-288 1923

Box 7, Folder 38.4
The effect of material in suspension on the characteristics of centrifugal pumps, by Leigh C. Fairbank, Jr., thesis, Master of Science, University of California, Berkeley April 1940

Box 7, Folder 38.5
Discussion of 'The Horizontal Carriage of Granular Material by an Injector-Driven Air Stream', by S.A. Wood and A. Bailey, University of California, Berkeley undated

Series 33. Cavitation 1911-1970

Box 7, Folder 39.1
Miscellaneous articles and references on cavitation

Box 7, Folder 39.2

Box 7, Folder 39.3
Laboratory investigations of the mechanisms of cavitation, by Robert T. Knapp and A. Hollander n.d

Box 7, Folder 39.4
Various papers on cavitation, includes:
Accelerated field tests of cavitation intensity, by R.T. Knapp, ASME 1956
Cavitation in the mixing zone of a submerged jet, by H. Rouse 1953
Present status of cavitation research, by R.T. Knapp undated
Determination of the relative resistance to cavitation erosion by the vibratory method, by S.L. Kerr 1937
Pitting resistance of metals under cavitation conditions, by J.M. Mousson 1937
Discussion of metals due to cavitation under experimental conditions, by M. Kurrein, ASME 1936
Failure of metals due to cavitation under experimental conditions, by H.N. Boetscher, ASME 1935
Progress in cavitation research at Princeton University, by L.F. Moody and A.E. Sorenson, ASME 1935
Cavitation and erosion investigated as a problem in fluid mechanics, by W.W. Pagon, ASME 1934

Box 7, Folder 39.5
Accelerated cavitation research, by William J. Rheingans 1949

Box 7, Folder 39.6
A comparison of wall effects on super-cavitating flows past symmetric bodies in solid wall channels and jets, by Hirsh Cohen and Yih-O Tu, Rensselaer Polytechnic Institute, Department of Mathematics, Troy, N.Y., 13+ p. (RPI MathRep No. 5) October 1956

Box 7, Folder 39.7

Box 7, Folder 40.1

Box 7, Folder 40.2

Box 7, Folder 40.3

Box 7, Folder 40.4
Cavitation testing in water tunnels, by Rueben M. Olson, St. Anthony Falls Hydraulic Laboratory, University of Minnesota, 49 p. (Project report no. 42) December 1954

Experimental research on cavitation collapse pressures, by John K. Vennard and Claud C. Lomas, Jr., Stanford University, Department of Civil Engineering December 1950

Observations on cavitation bubble collapse, by Albert T. Ellis, California Institute of Technology, Hydrodynamics Laboratory, 77 p. (Report no.21-12) December 1952

Evaluation of the integrals occurring in the cavity theory of Plesset and Shaffer, by Byrne Perry, California Institute of Technology, Hydrodynamics Laboratory, 24 p. (Report no.21-11) December 1952

The collapse and rebound of a gas bubble, by Leon Trilling, California Institute of Technology February 1951

The growth or collapse of a spherical bubble in a viscous compressible liquid, by Forrest R. Gilmore, California Institute of Technology, Hydrodynamics Laboratory, 40 l. (Report no.26-4) April 1952

Force measurements on resisting bodies and blade profiles in flowing water in cases of cavitation, by E. Martyrer, in *Hydromechanical Problems in the Propulsion of Ships*, Translated by Hans Schomka (No.133). 17 p. (typescript). (Works Progress Administration Project no.58) 1932

Cavitation study, by K.W. Beattie, in *Baldwin Southwark*, pp.20-23; and What cavitation is, by Lewis F. Moody, reprinted from *Baldwin Southwark*, Third Quarter September 1940

Test stand for centrifugal and propeller pumps, by G.F. Wislicenus, reprinted from *Transactions of the A.S.M.E.*, pp.619-624 August 1942

What is 'NPSH'? by Dan R. Rankin, in *Petroleum Refiner*, June 1953
Box 8, Folder 41.12
How to use system-head curves, by Melvin Mann, in Chemical Engineering, February 1953

Box 8, Folder 41.13

Box 8, Folder 41.14
Several papers on cavitation dated 1926-32

Box 8, Folder 41.15

Box 8, Folder 41.16
The inception of cavitation on isolated surface irregularities, by J.W. Holl, Transactions of the ASME, 15 p. (Paper no.59-HYD-12) May 1959

Box 8, Folder 41.17
Adiabatic flow of flashing liquids in pipes, by M. Sajben, Transactions of ASME, (Paper no.61-Hyd-7) June 1961

Box 8, Folder 41.18
The tensile strength of liquids: a review of the literature, by F.G. Blake, Jr., Harvard University, Dept. of Engineering Sciences and Applied Physics, 68 p. (Technical memorandum no.9) June 1949

Box 8, Folder 41.19
The study of cavitation on screw propellers, by H. Lerbs, translated by M.C. Roemer, U.S. Experimental Model Basin, Navy Yard, Washington, D.C., 60+ l. (Translation no.46) April 1937

Box 8, Folder 41.20
Notes from Mitteilungen uber forschungsarbeiten auf dem gebiete des Ingenieurwesens Verein deutscher Ingenieure, Heft 112, Berlin 1911

Box 8, Folder 41.21

Box 8, Folder 41.22

Box 8, Folder 41.23
The prediction of centrifugal pump cavitation head-capacity characteristics, by Arthur L. McGee, for ME 199, University of California, Berkeley May 26, 1959

Box 8, Folder 41.24
The study of cavitation on screw propellers, by H. Lerbs, translated by M.C. Roemer, U.S. Experimental Model Basin, Navy Yard, Washington, D.C., 60+ l. (Translation no.46) April 1937

Box 8, Folder 41.25
Accelerated field tests of cavitation intensity, by R.T. Knapp, reprinted from the Transactions of the ASME, pp.91-102 January 1958

Box 8, Folder 41.26
The six-inch water tunnel at the St. Anthony Falls Hydraulic Laboratory and its experimental use in cavitation design studies, by Lorenz G. Straub, John F. Ripken, and Rueben M. Olson, University of Minnesota, St. Anthony Falls Hydraulic Laboratory, Minneapolis, 22 l. (Technical paper no.16, Series B) March 1956

Box 8, Folder 41.27
Concerning cavitation installations for small cavitation numbers, by H. Reichardt, Headquarters Air Materiel Command, Wright Field, Dayton, Ohio August 1946

Box 8, Folder 41.28

Box 8, Folder 41.29
Concerning cavitation installations for small cavitation numbers, by H. Reichardt, Headquarters Air Materiel Command, Wright Field, Dayton, Ohio August 1946

Box 8, Folder 41.30
Hydrodynamics Laboratory, California Institute of Technology, Pasadena, Calif. undated

Box 8, Folder 41.31
The dynamics of cavitation bubbles, by M.S. Plesset, reprinted from the Journal of Applied Mechanics, pp.277-282 September 1949

Box 8, Folder 41.32
Suction head correction for centrifugal pumps, by John M. Soth, Alexander Brkich and Harold Stahl, Ingersoll-Rand, N.Y. May 1959

Box 8, Folder 41.33

Box 8, Folder 41.34
Cavitation-free inlets and contractions; electrical analogy facilitates design problem, by Hunter Rouse and M.M. Hassan, Mechanical Engineering, Vol71, no.3. pp.213-216 March 1949

Box 8, Folder 41.35
On the mechanism of cavitation damage, by M.S. Plesset and A.T. Ellis, California Institute of Technology, Hydrodynamics Laboratory, Pasadena, Calif., 1 v. (various pagings) (Report no.21-15) June 1954
Box 8, Folder 41.36

Box 8, Folder 41.37
Camera captures cavitation, *Comp. Air Magazine*, January 1961

Box 8, Folder 41.38
Recent investigations of the mechanics of cavitation and cavitation damage, by Robert T. Knapp, reprinted from *Transactions of the ASME*, pp.1045-1054 October 1955

Box 8, Folder 41.39
Further studies of the mechanics and damage potential of fixed type cavities, by Robert T. Knapp, presented at the Symposium on Cavitation in Hydrodynamics, held at the National Physical Laboratory, Teddington, England September 14-17, 1955 See 41.22

Box 8, Folder 41.40

Box 8, Folder 41.41

Box 8, Folder 41.42

Box 8, Folder 41.43

Box 8, Folder 41.44

Box 8, Folder 41.45

Box 8, Folder 41.46

Box 8, Folder 41.47

Box 8, Folder 41.48

Box 8, Folder 41.49

Box 8, Folder 41.50

Box 8, Folder 41.51

Box 8, Folder 41.52

Box 8, Folder 41.53

Box 8, Folder 41.54

Box 8, Folder 41.55

Box 8, Folder 41.56

Box 8, Folder 41.57

Box 8, Folder 41.58

Cavitation in centrifugal pumps, by A.J. Stepanoff, reprinted from the *Transactions of the A.S.M.E.*, pp.539-552 October 1945

Determination of the relative resistance to cavitation erosion by the vibratory method, by S. Logan Kerr, preprinted from *Transactions of the A.S.M.E.*, July 1937

Cavitation on marine propellers, by Lybrand P. Smith, preprinted from *Transactions of the A.S.M.E.*, July 1937

Pitting resistance of metals under cavitation conditions, by J.M. Mousson, preprinted from *A.S.M.E. Transactions*, July 1937

A preliminary study of steam and water flow in venturi tubes, by R.V. Smith, et al, Colorado State University, Fort Collins September 1960

"Cavitation in a venturi tube passing Nak (78°/K.) alloy at 200-300 c.," by T.I.M. Crofts, United Kingdom Atomic Energy Authority, Industrial Group, 1 v. (unpaged) (Declassified reprint) August 1954

Behavior of piezo-electric transducer systems, from *Sonically induced cavitation*, by Frank Watson Neilson, J. Hugh Hamilton, and L. Dale Harris, University of Utah, Engineering Experiment Station, Salt Lake City, 148 p. (Technical report V) August 1954

Series 33. Cavitation 1911-1970

Series 34. Axial and Radial Thrust in Centrifugal Pumps 1932-1960

Some performance characteristics of deep-well turbine pumps, by R.G. Folsom, reprinted from A.S.M.E. Transactions, pp.245-250 April 1941

Centrifugal pumps for the Colorado River Aqueduct, by Robert L. Daugherty, Mechanical Engineering, pp.295-299 April 1938

Axial and radial thrust in multi-stage centrifugal pumps, by Max Spillman, Worthington Pump and Machinery Corporation undated

Some general results of pump tests at the Hydraulic Testing Laboratory at California Institute of Technology, by F.L. Wattendorf, Metropolitan Water District of Southern California August 1935

Field failure, large ball thrust bearings, Pump Motor Service, February 1946

Pressure distribution and radial forces in a centrifugal pump, by H.P. Bausch, for ME 199, University of California, Berkeley May 1959

Axial thrust of 2 x 16 WB pump, Pacific Pumps, Inc., Huntington Park, Calif., 3+ p. (includes data tables, photo, blueprint) November 1959

Load distribution within ball and roller bearings for given external radial and thrust loads, by Harald Sjovall, SKF Inc. 1946

Untitled thesis by Charles Cehrs - original figures August 1951

Prediction of head capacity for centrifugal pump, by R.E. Rolling, for ME 298, University of California, Berkeley 1956

The evolution of low-lift pumping plants in the Gulf Coast country, by W.B. Gregory, American Society of Mechanical Engineers, New York April 1916

Der Genauigkeitsgrad von Flügelmessungen bei Wasserkraftanlagen, von A. Staus, mit 15 Textabbildungen und 4 Zahlentafeln, Berlin 1926

Coordinate methods of measuring pipe flow, by J.E. Christiansen 1937

An investigation of the performance of large centrifugal pumps using air as a medium, by Miguel A. Quinones, Rensselaer Polytechnic Institute, Troy, N.Y., 48 p. (Bulletin no. 48, Engineering and science series) September 1934

Kort's nozzle tugboat, from a lecture by Reg Baurat Goede, before the Society of Supporter of the Hanover Institute of Experiments for Ground and Water Construction November 1932

University of California pump-testing laboratory, by Richard G. Folsom, reprinted from Mechanical Engineering April 1938, pp.301-305

The aerodynamic testing of centrifugal pumps and water turbines, Engineering, pp.93-96 January 27, 1939

Folder containing Standard Symbols, including: American tentative standard symbols for hydraulics, approved by American Standard Association July 1929;
American standard mathematical symbols, approved by American Engineering Standard Committee January 1928;
American standard symbols for mechanics, structural engineering and testing materials, approved by American Standards Association January 1932;
American tentative standard symbols for heat and thermodynamics, approved by American Standards Association February 1931

Australian standard rules for acceptance tests of pumps, known as the S.A.A. Pump Test Code, University of California, Department of Mechanical Engineering 1940

New facilities for pump testing at Allis-Chalmers, n.d

Pump testing laboratory; testing centrifugal pumps, presented by M.P. O’Brien and R.G. Folsom at Rural Electrification Conference, University of California, Davis January 16, 1940

Reducing the cost of operating centrifugal water works pumps, by A. Peterson, reprinted from Journal of the American Water Works Association, pp.868-876 July 1936

Performance and test standards for self-priming centrifugal pumps, The LaBour Company, Inc., Elkhart, Ind undated

Measurement of irrigation water on the farm, by H.A. Wadsworth, University of California, Agricultural Experiment Station, 36 p. (Circular no. 250) July 1922

A study of small individual and cooperative pumping enterprises in Orange County, by James R. Tavernetti and M.R. Huberty, University of California, Agricultural Experiment Station, Berkeley October 1936

Regeln für leistungsversuche an kreiselpumpen, aufgestellt von dem vom Verein deutscher Ingeniure und fom Kreiselpumpen, Verband gebeldeten Ausschulss in Den Jahren 1926 and 1927, Berlin 1928

Vergleichs-wassermessungen am Walchenseewerk, by O. Kirschmer, Zeitschrift des Vereines Deutscher Ingenieur,Bd. 74, Nr. 17, pp.521-528 April 26, 1930

Pump testing methods, Appendix I, for ME 127 March 1939

Acceptance tests of 3600 rpm de Laval centrifugal pump; special problem, by George Petroff, for ME 131B Spring 1938

Testing dry air vacuum pumps, by Harwood F. Mullikin, Mechanical Engineering, vol. 53, no. 6, pp.438-441 June 1931

Analysis of pump test and cost of pumping records, by J.B. Brown (to R.G. Folsom) undated

Public utility pump testing service - why and how?, presented at Deep Well Pump Conference November 10, 1939

Effect of wall location (from pump suction line) on pump performance, by H.W. Iversen June 1949

Miscellaneous handwritten notes on pump testing; also includes photos, correspondence 1948?

The HV-1 oil-diffusion vacuum pump, Eimac News,Vol. 3, no. 31 May-June 1945

Box 9, Folder 45.4
Kinney high vacuum pumps, Kinney Manufacturing Co., Boston, Mass., (Bulletin V45) 1945

Box 9, Folder 45.5

Box 9, Folder 45.6
High vacuum valves; packless construction, National Research Corporation, Vacuum Engineering Division, Boston, Mass. (Bulletin no. V-1)

Box 9, Folder 45.7
High vacuum seals, National Research Corporation, Vacuum Engineering Division, Boston, Mass., (Bulletin no. VS-1) undated

Box 9, Folder 45.8
Fuller rotary compressors and vacuum pumps, Fuller Company, Catasauqua, Pa., (Bulletin C-5) August 1948

Box 9, Folder 45.9
Steam jet ejectors, Elliott Company, Heat Transfer Department, Jeannette, Pa., 31 p. (Bulletin G-7) undated

Box 9, Folder 45.10

Box 9, Folder 46.1
Notes on the one-dimensional theory of compressible flow in pipes, by W. Goldsmith undated

Box 9, Folder 46.2
Das feld einer Raschbewegten Schallquelle, by Nikolaus Rott, Mitteilungen aus dem Institut für Aerodynamik, Zurich, 87 p. (No.9) 1945

Box 9, Folder 46.3
Ueber die Verwendung von leichten Gasen für Wärmekraftmaschinen mit geschlossenem Kreislauf, von J. Ackeret, sonderdruck aus der Schweiz Bauzeitung, Bd. 127, S. 51 1946

Box 9, Folder 46.4

Box 9, Folder 46.5
Leonhard Eulers letzte Arbeit, von J. Ackeret 1945

Box 9, Folder 46.6
The work of the Imperial College, Engineering, pp.415-416 November 23, 1945

Box 9, Folder 46.7

Box 9, Folder 46.8
Fluid mechanics, University of California, Department of Engineering, 19 p. (HYD-481) undated

Box 9, Folder 46.9
The subsonic and supersonic two dimensional flow fields about slender bodies, by E.V. Laitone, Cornell Aeronautical Laboratory July 1946

Box 9, Folder 46.10
The subsonic flow about a body of revolution, by E.V. Laitone, reprinted from Quarterly of Applied Mathematics, Vol. 5, No.2, pp.227-231 July 1947

Box 9, Folder 46.11
The supersonic flow about a body of revolution, by E.V. Laitone, Cornell Aeronautical Laboratory October 1946

Box 9, Folder 46.12
The subsonic and supersonic flow about an inclined body of revolution, by E.V. Laitone, Cornell Aeronautical Laboratory December 1946

Box 9, Folder 46.13
The limiting line and its relation to the critical Mach number, by Hideo Yoshihara, Headquarters Air Materiel Command, Dayton, Ohio November 1947

Box 9, Folder 46.14
Phenomena in supersonic diffusers, by Heinrich Ramm, Headquarters Air Materiel Command, Dayton, Ohio November 1947

Box 9, Folder 46.15
50 miles straight up, Douglas Airview undated

Box 9, Folder 46.16
Compressible flows obtainable from two-dimensional flows through the addition of a constant normal velocity, by H. Poritsky, Journal of Applied Mechanics, pp.61-65 March 1946

Box 9, Folder 46.17
Significance of the Reynolds criterion in the gas-theory, undated

Box 9, Folder 46.18
Analyzing airflow... with schlieren and shadowgraph equipment; theory and operation of both methods, by N.F. Barnes and S.L. Bellinger, General Electric Review, pp.27-36 December 1944
Box 9, Folder 46.18
Theory of the nonstationary gas flow III: Laminar flow in tubes of variable cross section in particular spherical and cylindrical waves, by Sauer, Headquarters Air Materiel Command, Dayton, Ohio February 1947

Box 9, Folder 46.19
Discussion of ‘Compressible flows obtainable from two-dimensional flows through the addition of a constant normal velocity’, by John Giese, Journal of Applied Mechanics, pp.74-76 March 1947

Box 9, Folder 46.20
The one-dimensional theory of steady compressible fluid flow in ducts with friction and heat addition, by Bruce L. Hicks, Donald J. Montgomery, and Robert H. Wasserman, National Advisory Committee for Aeronautics, Washington, D.C., 26 p. (Technical note no. 1336) July 1947

Box 9, Folder 46.21

Box 9, Folder 46.22
Nozzles for supersonic flow without shock fronts, by Ascher H. Shapiro, Journal of Applied Mechanics, 1943

Box 9, Folder 46.23
The initial shock in a local region of supersonic flow, by E.V. Laitone, Cornell Aeronautical Laboratory April 1946

Box 9, Folder 46.24
Exact and approximate solutions of oblique shock flow, by E.V. Laitone, Cornell Aeronautical Laboratory 1946

Box 9, Folder 46.25
High speed aircraft developments, by E.H. Heinemann, presented before the American Society of Mechanical Engineers May 28, 1947

Box 9, Folder 46.29

Box 9, Folder 46.31
Miscellaneous papers and articles re compressible flow in pipes

Box 9, Folder 46.32
Some comparisons between compressible and incompressible treatments of compressible fluids, by R.P. Benedict, Transactions of ASME, January 1964

Series 38. Turbulence 1938-1953

Box 9, Folder 47.1

Box 9, Folder 47.2

Box 9, Folder 47.3
Rectangular artificial roughness in open channels, by J.W. Johnson, reprinted from Transactions of the American Geophysical Union, pp.906-914 1944

Box 9, Folder 47.4
Experiments on eddy-diffusion and suspended-material transportation in open channels, by A.A. Kalinske and C.L. Pien, reprinted from Transactions of the American Geophysical Union, pp.530-536 1943

Box 9, Folder 47.5
Temperature gradients in turbulent gas streams; preliminary studies, by W.H. Corcoran, B. Roudebusch and B.H. Sage, reprinted from Chemical Engineering Progress, Vol. 43, No.3. pp.135-142 March 1947

Box 9, Folder 47.6

Box 9, Folder 47.7
Shear transmission from a turbulent flow to its viscous boundary sub-layer, by H.A. Einstein and Huon Li undated

Box 9, Folder 47.8
Experimental investigation of turbulence diffusion - a factor in transportation of sediment in open-channel flow, by E.R. Van Driest, Journal of Applied Mechanics, Vol.12, No.2, pp.91-100 June 1945

Box 9, Folder 47.9
Fluctuating components of velocity in non-isotropic turbulent pipe flow, by Paul E. Rosenthal, for ME131B, University of California June 1948

Turbulence and energy dissipation, by A.A. Kalinske, Transactions of the A.S.M.E., pp.41-48 January 1941

The analogy between fluid friction and heat transfer, by Th. Von Karman, Transactions of the A.S.M.E., September 1939

Transportation of silt, Chapter VIII, University of California, Division of Civil Engineering, HY-40 undated

Mixing and equilibrium in pipe flow, by Willis H. Carrier and W. Stuart Misener, American Society of Mechanical Engineers, 11+ l. (Paper no.53-S-44) May 1953

Bibliography from Acceleration of bodies in fluids - a study of virtual mass, by Thomas E. Stepon 1955

The computation of the apparent mass of dirigibles, by Max M. Munk, J. Ae. S., Vol.2, pp.97-100 May 1935

Drag forces on an accelerated cylinder, by A.D.K. Laird and C.A. Johnson, University of California, Berkeley 1955

The transverse force and moment on a three dimensional body, by E.V. Laitone, np undated

Fluid resistance to accelerating ships, by Ralph Balent August 1944

a) The determination and correlation of the virtual mass of ship models, by James Peter Murphy, unpublished thesis (MS.), University of California, Berkeley April 1937
b) Figures to accompany 48.8a

On the flow impulses (in an infinitely extending fluid) which are not determinable, by Tollurieson February 1950

Virtual mask of disks, by Ralph Balent, ME299, University of California, data book and computations 1949

A new concept of the theory of virtual mass with calibration of the 110-foot towing tank and investigation of wavemaking resistance of submerged bodies, by Thomas Pleasant Faulconer, M.E.199, University of California June 1940

Effect of pulsations on flow of gases, by Horace Judd and Donal B. Pheley, The Ohio State University Bulletin, Vol.27, No.15 March 14, 1923

References on pulsations; separate index cards undated

Experimentelle untersuchung des einflusses von pulsationen auf den Strömungswiderstand von Kreisrohren und die Durchflußzahl von Normdüsen, by Ernst Estel, Zentralblatt fur Mechanik, Vol.6, No.5, (Translation by E.B. Barnes.) November 2, 1937

The effect of pulsations on orifice and nozzle coefficients, by Robert L. O’Bryan, for M.E.219, University of California, Department of Mechanical Engineering May 14, 1938

Indication cards on pulsating flow, for M.E. 131B, University of California, Berkeley undated

Methods of measuring large volumes of natural gas, by J.E. Overbeck and S.R. Beitler undated 1939

Discharge measurement with pulsating flow: theoretical basis for determining the error and service tests, by Fritz Herning and Christoph Schmid, translated from Zeitschrift des Vereines deutscher Ingenieure, 82, pp.1107-1114
<table>
<thead>
<tr>
<th>Box 9, Folder 50.9</th>
<th>Handwritten ME131B report, titled M-659, initialed C.F.C. March 26, 1937</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 9, Folder 50.10</td>
<td>Preliminary report on the effect of pulsations on orifice coefficients, by R.L. O'Bryan, for M.E. 219, University of California, Berkeley August 30, 1937</td>
</tr>
<tr>
<td>Box 9, Folder 50.11</td>
<td>Pulsating flow, by R.L. O'Bryan, M.E. 219, University of California, Berkeley, 1 v. (unpaged) (HE-49) 1937-1938</td>
</tr>
<tr>
<td>Box 9, Folder 50.12</td>
<td>Effect of pulsation on coefficient of discharge, by Willard Knupp, et al., for M.E.131B, University of California, Berkeley April 1938</td>
</tr>
<tr>
<td>Box 9, Folder 50.13</td>
<td>Uker Gasmesgenmessung bei Kolbenmaschinen Mittels Dusen u Blenden, by O. Lutz May 1932</td>
</tr>
</tbody>
</table>

Series 41. Losses in Fluid Flow 1924-1952

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 9, Folder 51.2</td>
<td>An investigation of losses of flow stream mechanical energy at abrupt changes in flow cross section, by W.M. Kays, Stanford University, Department of Mechanical Engineering, 81 l. (Technical report no.1) September 1948</td>
</tr>
<tr>
<td>Box 9, Folder 51.3</td>
<td>Guide vanes for deflecting fluid currents with small loss of energy, by G. Kröber, N.A.C.A., 2 p. (handwritten) (T.M. no.722) undated</td>
</tr>
<tr>
<td>Box 9, Folder 51.4</td>
<td>New data for the design of elbows in duct systems, by Loring Wirt, reprinted from General Electric Review, pp.286-296 June 1927</td>
</tr>
<tr>
<td>Box 9, Folder 51.6</td>
<td>Boundary layer flow in the corner of a diffuser, by J.B. Jones and R.C. Binder, Purdue University, Engineering Experiment Station, Lafayette, Indiana, 39 p. (Research series no.115) 1952</td>
</tr>
<tr>
<td>Box 9, Folder 51.7</td>
<td>a) Tests on the hydraulics and pneumatics of house plumbing, by Harold E. Babbitt, University of Illinois Bulletin, Vol.XXI, No.47 July 21, 1924</td>
</tr>
<tr>
<td>Box 9, Folder 51.9</td>
<td>Conversion of kinetic to potential energy in flow expansions, by A.A. Kalinske, American Society of Civil Engineers Papers, pp.1545-1564 December 1944</td>
</tr>
<tr>
<td>Box 9, Folder 51.10</td>
<td>Solving problems of gas pipe line design by use of significant factors, by C.L. Brockschmidt and M.K. Hager, The Petroleum Engineer, pp.142-164 December 1944</td>
</tr>
<tr>
<td>Box 9, Folder 51.11</td>
<td>Vaporization inside horizontal tubes, by W.H. McAdams, W.K. Woods, and R.L. Bryant, Transactions of the ASME, January 1941</td>
</tr>
<tr>
<td>Box 9, Folder 51.12</td>
<td>Long-distance natural-gas-transmission pipe lines, by J.J. King, Mechanical Engineering, Vol.73, No.7, pp.545-548 July 1951</td>
</tr>
<tr>
<td>Box 9, Folder 51.13</td>
<td>An approximate formula for pipe friction factors, by Lewis F. Moody, Mechanical Engineering, Vol.69, No.12, pp.1005-1006 December 1947</td>
</tr>
<tr>
<td>Box 9, Folder 51.14</td>
<td>Purpose and use of friction chart, Bayley Blower Company November 25, 1930</td>
</tr>
<tr>
<td>Box 9, Folder 51.15</td>
<td>Design and construction of Pacific Gas and Electric Company's 34-inch gas line, by John J. Pugh, Ray L. Hamilton, and Richard Finnie, for presentation at the ASME 1952 Spring Meeting March 24-26, 1952</td>
</tr>
<tr>
<td>Box 9, Folder 51.16</td>
<td>An electrical analyzer for pipeline networks, Western Industry, pp.66-67 November 1951</td>
</tr>
<tr>
<td>Box 9, Folder 51.17</td>
<td>On steady flow formulae in pipes and channels, by S. Irmay, International Association for Hydraulic Structures Research September 1949</td>
</tr>
<tr>
<td>Box 9, Folder 51.18</td>
<td>Solution of special problems in pipe flow by graphical analysis, by Grant K. Palsgrove, Rensselaer Polytechnic Institute Bulletin, No.37 August 1932</td>
</tr>
<tr>
<td>Box 9, Folder 51.19</td>
<td>Fluid highways, I: Piping elements, Power, pp.61-83 December 1937</td>
</tr>
</tbody>
</table>
Fluid highways, II: Piping systems, Power, pp.44-57 December 1937

Theorie de l'Ecoulement turbulent, point de vue d'un ingenieur aux irrigations de l'inde, by T. Blench, La Houille Blanche, No. 3, pp.163-179 May 1946

Shear flow past a circular cylinder in an incompressible fluid of small viscosity, by Robert Duffy and Ting Y. Li, Rensselaer Polytechnic Institute, Troy, N.Y., 29 p. (TN-57-715) October 1957

Analytical interpretation of density-currents of air chilled by nocturnal radiation, by F.A. Brooks and W.P. Berggren, reprinted from Transactions of the American Geophysical Union, pp.189-204 1943

Theory of heat transfer in smooth and rough pipes, by G.D. Mattioli 1942

Heat transfer through turbulent friction layers, by H. Reichardt, translated by L.M.K. Boelter, from Zeitschrift für Angewandte Mathematik und Mechanik Ingenieurwissenschaftliche Forschungsarbeiten, Band 20, Heft 6 21, December 1940

Theses presentees a la faculte des Sciences de Toulouse pour obtenir le titre d'ingenieur-docteur, by M.L. Castagnetto 1939

Bibliography on jets - mixing and turbulence undated

Transfer of momentum in jet of air issuing into a tube, by L.G. Alexander, et al, University of Illinois, Engineering Experiment Station, Urbana May 1952

An ad hoc theory of free turbulent jets, by L.G. Alexander, University of Illinois, Engineering Experiment Station, Urbana, 21 p. (Technical report no.13) August 1952

Studies on a non-isothermal jet discharging into a duct, by A. Kivnick and E.D. Henze, University of Illinois, Engineering Experiment Station, Urbana, 27 l. (Technical report no.CML-1) December 1951

Application of the Reichardt hypothesis to the transport of momentum and mass in coaxial jets, by Arnold Kivnick, University of Illinois, Engineering Experiment Station, Urbana, 40 p. (Technical report no. CML-2) June 1952

Mixing of high-velocity air jets, by T. Baron and E.H. Bollinger, University of Illinois, Engineering Experiment Station, Urbana, 101 l. (Technical report no.CML-3) March 1952

The coalescence of droplets in a turbulent jet, by Arnold Kivnick, University of Illinois, Engineering Experiment Station, 25 p. (Technical report no.CML-4) August 1952

Dynamics of free turbulence, by Thomas Baron, University of Illinois, Engineering Experiment Station, 21 l. (Technical report no.1) November 1948

Turbulent mixing in an isothermal free jet, by J.F. Taylor, H.L. Grimmett, and E.W. Comings, University of Illinois, Engineering Experiment Station, 32 l. (Technical report no.2) November 1948
Box 10, Folder 53.12
The velocity field in an isothermal turbulent free jet adjacent to the source, by L.G. Alexander, University of Illinois, Engineering Experiment Station, 10 l. (Technical report no.3) November 1948

Box 10, Folder 53.13
Atomization of liquid jets and droplets, by Thomas Baron, University of Illinois, Engineering Experiment Station, 24 l. (Technical report no.4) February 1949

Box 10, Folder 53.14
Isothermal free jets of air mixing with air, by J.F. Taylor, H.L. Grimmett, and E.W. Comings, University of Illinois, Engineering Experiment Station, 18 l. (Technical report no.6) February 1950

Box 10, Folder 53.15
Ricerca sperimentale sulla diffusione di una vena liquida effluente in un campo di liquido in quiete (Prima serie di prove), by Duilio Citrini, estratto dal Fascicolo VIII, della rivista mensile L’energia Elettrica. Agosto 1946

Box 10, Folder 53.16
Jet mixing of two liquids, by R.G. Folsom and C.K. Ferguson, Transactions of the ASME, pp.73-77. Folder also includes correspondence January 1949

Box 10, Folder 53.17
Experimental investigation of critical submergence for vortexing in a vertical cylindrical tank, by E. Kent Springer and F.M. Patterson, American Society of Mechanical Engineers, New York, 8 p. (Publication no.69-FE-49) April 1970

Box 10, Folder 54.1
Jet stability, undated

Box 10, Folder 54.2

Box 10, Folder 54.3
Hydrodynamics in modern technology, symposium held on the occasion of the dedication of the Hydrodynamics Laboratory and Ship Model Towing Tank, Massachusetts Institute of Technology, Hydrodynamics Laboratory June 1951

Box 10, Folder 54.4

Box 10, Folder 54.5

Box 10, Folder 54.6
A theoretical and experimental investigation of jet-augmentation, by John G. Wilder, Jr., Curtiss-Wright Corporation, Aerodynamics Department September 1945

Box 10, Folder 54.7

Box 10, Folder 54.8

Box 10, Folder 54.9

Box 10, Folder 54.10

Box 10, Folder 54.11

Box 10, Folder 54.12
Fluctuations in a spray formed by two impinging jets, by Marcus F. Heidmann and Jack C. Humphrey, National Advisory Committee for Aeronautics, Washington, D.C., 35 p. (Technical note 2349) April 1951

Box 10, Folder 54.13

Box 10, Folder 54.14

History of orifice meters and the calibration, construction, and operation of orifices for metering, report of the Joint A.G.A.-A.S.M.E. Committee on Orifice Coefficients 1935

Fluid meters; their theory and application, Part I, report of A.S.M.E. Special Research Committee on Fluid Meters (4th ed.) 1937

Proceedings of the Petroleum Fluid Metering Conference, American Society of Mechanical Engineers April 1938

Proceedings of the Petroleum Fluid Metering Conference, American Society of Mechanical Engineers April 1940
Box 10, Folder 61.16
Large diameter orifice meter rube tests, American Gas Association May 1954

Box 10, Folder 61.17
"ASME-API code for installation, proving and operation of positive displacement meters in liquid hydrocarbon service, or Petroleum P.D. meter code," American Petroleum Institute July 1946

Series 46. Metering - Orifices 1878-1963

Box 10, Folder 62.1

Box 10, Folder 62.2
Code for the measurement of water using standard ISA orifices with free discharge, by M.P. O'Brien, Berkeley, Calif. August 1937

Box 10, Folder 62.3
The discharge coefficient of standard orifices and their dependence on the length of the edge, by G. Ruppel, VDI, 1937

Box 10, Folder 62.4
A study of the coefficients of discharge of circular submerged orifices in pipe lines, by Alexander M. Dickie and Howard A. Evans, University of California December 1928

Box 10, Folder 62.5
The flow of fluids through orifices in six-inch pipes, by S.R. Beitler and Paul Bucher, Transactions of A.S.M.E., December 1929

Box 10, Folder 62.6

Box 10, Folder 62.7

Box 10, Folder 62.8
Pressure reduction on the face of orifice plates and weirs, by Charles William Harris, Bulletin of the University of Washington, Engineering Experiment Station, 27 p. (Bulletin no.35) March 1926

Box 10, Folder 62.9
Some observations of flow phenomena in nozzles and orifices, by P. Jordan 1939

Box 10, Folder 62.10
Comitato per l'ingegneria, estratto da La ricerca scientifica, Anno X, no. 10, p. 966 October 1939

Box 10, Folder 62.11
Folder containing material in re orifices, effect of temperature, including:

Orifices-effect of temperature, by H. Smith, Jr.; Experiments on the discharge of water of different temperatures, by J.C. Mair; The influence of temperature on the discharge of water from an orifice in the hemispherical bottom of an open topped cylindrical vessel, by Isherwood 1878

Box 11, Folder 62.12
The coefficients of standard nozzles and orifices at the entrance and exit of pipes, by E. Stach, VDI 1934

Box 11, Folder 62.13
Tests on efflux measurement with sharp-edged orifices, by W. Schultes, K. Jaroschek, and H. Werkmeister, VDI, Berlin 1938

Box 11, Folder 62.14
Impact pressure in front of diaphragm quantity meters, by F. Engel, translated by E.B. Barnes, from Die Wärme, Geitschrift für Dampfkessel und Maschinenbetrich, 60th Annual Series, No. 26 June 26, 1937

Box 11, Folder 62.15
Influence du libre parcours sur l'écoulement d'un gaz à la vitesse du son à travers un orifice, by Leon Agostini, Publications Scientifiques et Techniques, Paris, 74 p. (No. 214) 1940

Box 11, Folder 62.16
Articles and abstracts on orifices 1928

Box 11, Folder 62.17

Box 11, Folder 62.18
See 62.5

Box 11, Folder 62.19

Box 11, Folder 62.20
The double orifice, by G. Walzholz, VDI 1936

Box 11, Folder 62.21
Box 11, Folder 62.22
Flow metering of molten lead-bismuth eutectic at University of California, by R.A. S-ban, W.T. Schrank, and D. Bartz
April 1949

Box 11, Folder 62.23
Plate roughness effect on the discharge of orifices and weirs, by Joseph Perlmutter and W.E. Dixon, University of California June 1945

Box 11, Folder 62.24
Prove su boccagli e diaframmi normalizzati inseriti in condotte da 200 mm, by Ettore Scimemi, estratto dal L’energia elettrica, Fascicolo VII, Vol.XIII 1936

Box 11, Folder 62.25
Considerazioni sulle perdite di carico dovute a bocchelli e diaframmi di misura, by Mario Marchetti, Memorie e studi, Istituto di Idraulica e Costruzioni Idrauliche, Milano, 8 p. (No.100) 1934

Box 11, Folder 62.26
Prove di controllo sul funzionamento idraulico dei diaframmi e dei boccagli normalizzati isa, by Mario Marchetti, Memorie e studi, dell’Istituto di Idraulica e Costruzioni Idrauliche, Milano, 16 p. (No.14) 1934 1936

Box 11, Folder 62.27

Box 11, Folder 62.28
Purdue University, School of Civil Engineering derivation of coefficients of orifices, by W.E. Howland and J.D. Richetta, Purdue University May 1935

Box 11, Folder 62.29
Determination of the effect of certain installation conditions on the coefficients of short-edged orifices, by S.R. Beitler and J.E. Overbeck, Transactions of the A.S.M.E., pp.115-120 April 1937

Box 11, Folder 62.30

Box 11, Folder 62.31
Square-edged inlet and discharge orifices for measuring air volumes in the testing of fans and blowers, by Lionel S. Marks, Transactions of the A.S.M.E., pp.593-597 January 1937

Box 11, Folder 62.32

Box 11, Folder 62.33
Standards of Hydraulic Institute, Eighth Edition, Hydraulic Institute 1947

Box 11, Folder 62.34
Measurement of water flow through pipe orifice with free discharge, Layne Bowler, Inc., Memphis, Tenn October 1943

Series 47. Orifice Coefficients at Low Reynolds Numbers 1913-1955

Box 10, Folder 63.1
Orifice coefficients for Reynolds numbers from 4 to 50000, by H.W. Iversen 1954

Box 10, Folder 63.2

Box 10, Folder 63.3

Box 10, Folder 63.4
Die durchflußzahlen von normaldusen und normalstaurändern für Rohrdurchmesser von 100 bis 1000 mm, by M. Jakob and Fr. Kretzschmer, Forschungsarbeitenauf dem Gebiete des Ingenieurwesens, Berlin, 35 p. (Heft 311) 1928

Box 10, Folder 63.5
The diaphragm method of measuring the velocity of fluid-flow in pipes, by Holbrook Gaskell, , pp.243-263. (Selected papers no.4092) undated

Box 10, Folder 63.6
Flow measurement with nozzles and orifices at low values of the Reynolds number, by H.G. Giese 1933

Box 10, Folder 63.7
Fluid flow measurement in pipe sizes below two inches, by Henry W. Stoll, reprinted from Petroleum Refiner, November 1948

Box 10, Folder 63.8
Orifice discharge coefficients in the viscous flow range, by G.S. Peterson, for presentation at the Annual Meeting, ASME, New York December 2-6, 1946

Box 10, Folder 63.9
Air flow through small orifices in the viscous region, by H.R. Linden and D.F. Othmer, Transactions of the ASME, pp.765-772 October 1949

Box 10, Folder 63.10
The laws of similarity for orifice and nozzle flows, by John L. Hodgson, Transactions of the A.S.M.E., undated

Orifice discharge coefficients in the viscous-flow range, by G.S. Peterson, Transactions of the A.S.M.E., pp.765-767 October 1947

Orifice discharge coefficients for viscous liquids, by G.L. Tuve and R.E. Sprenkle, Instruments, pp.201-206 November 1933

Discharge measurements at low Reynolds numbers, A.S.M.E. Research Committee on Fluid Meters, Subcommittee #7, Annual report November 1951

References for flow meters at low Reynolds numbers, prepared by W.A. Gross 1951

Published nozzles and orifices used in closed conduits-results of experiments at low Reynolds numbers, by Mario Marchetti, (translated) February 1947

La mesure des debits aux petits nombres de Reynolds, by Andre Jorissen, Liege 1954

An investigation of the coefficient of discharge of liquids through small round orifices, by W.F. Joachim, National Advisory Committee for Aeronautics, Washington, D.C., 10 p. (Report no. 224) 1926

Orifice coefficients at low Reynolds numbers, by H.W. Iversen, interim report to the ASME Research Committee on Fluid Meters 1953

Investigation of fluid meters at low Reynolds numbers, by Anatole W. Elvitsky undated

Flow coefficients for eight sharp edge orifices in a one-inch I.D. pipe, by Charles Kojabashian, Massachusetts Institute of Technology 1952

Investigation of published information on orifice meters at low Reynolds numbers, by Anatole W. Elvitsky undated

Determination of the coefficient of the flow of nozzles and submerged orifices, by P. Leroux, and J. Deullin, Annales des Mines ou Resueil, Treizieme serie tome IV, II Livraison de 1933

Research on standard nozzles, by G. Ruppel, VDI 1935

New shapes of nozzles for low and medium Reynolds numbers, by W. Koennecke, Berlin 1938

Nozzle coefficients for free and submerged discharge, by R.G. Folsom, Transactions of the A.S.M.E., January 1939

Research on flow nozzles; record of progress in the work of the A.S.M.E. Special Research Committee on Fluid Meters, by Howard S. Bean, Transactions of the A.S.M.E., Mechanical Engineering, pp.500-502 January 1939

Uber Anderungen der Stromungsform in MeBdusen, by Fritz Kretzschmer, Forschung, 9 Bd., Heft 1, pp.35-40 January/Febr.1938

Hydraulic characteristics of fuel-injection nozzles, by O.F. Zahn, Transactions of the A.S.M.E., pp.373-377 May 1942

Fluid-meter nozzles, by B.O. Buckland, Transactions of the A.S.M.E., pp.827-832 January 1935
Box 10, Folder 65.8 Experimental investigation of fire monitors and nozzles, by Hunter Rouse, J.W. Howe, and D.E. Metzler, Proceedings, ASCE, Vol. 77, Separate no. 92 October 1951
Box 10, Folder 65.9 A.S.M.E. long radius nozzle tests; report on pipe tap measurements for free discharge, University of California, Department of Mechanical Engineering 1937
Box 10, Folder 65.10 ASME fluid meters correspondence, blueprints; misc. literature 1935-1938;

Box 10, Folder 65.11 Flow nozzle coefficient tolerances, by S.R. Beitler, ASME, (Publication 72-WA/FM-7) January 1973

Series 49. Metering - Venturi 1927-1962

Box 10, Folder 66.1 The Venturi meter for main pipe lines, Builders Iron Foundry, Providence, R.I., 23 p. (Bulletin 243) 1929
Box 10, Folder 66.3 Die Beiwerte von Normdüsen und Normblenden im Einlauf und Auslauf, von E. Stach, Zeitschrift des Vereines deutscher Ingenieure, Bond 78, Nr. 6, pp. 187-189 February 1934
Box 10, Folder 66.4 New flow meter uses side contractions only, by Floyd A. Nagler, Engineering News-Record, pp. 131-132 August 3, 1933
Box 10, Folder 66.5 Beeinflussung der Anzeige von Venturimessern durch kleine Abweichungen in der Düsenform, von J. Spangler undated
Box 10, Folder 66.6 Aufbau der messtechnischen überwachung der Kläranlage West-Middlesex, by F. Engel, Archiv für Technisches Messen, pp. 86-89 July 1937
Box 10, Folder 66.7 Abflussgleichungen für venturikanäle, von F. Engel, Deutsche Wasserwirtschaft, No. 6, pp. 110-114 1937
Box 10, Folder 66.8 A practical venturi meter for irrigation service, by J.E. Christiansen and I.H. Teilman, reprinted from Engineering News-Record, pp. 183-188 January 29, 1931
Box 10, Folder 66.9 a) Effect of high temperatures and pressures on cast-steel venturi tubes, by W.S. Pardoe, ASME December 1938
b) The coefficient of Herschel type cast-iron venturi meters, by W.S. Pardoe, ASME 1944
Box 10, Folder 66.10 Beeinflussung der Anzeige von Venturimessern durch vorgeschaltete Krümmer, by H. Mueller, pp. 29-40 undated
Box 10, Folder 66.11 Folder containing: Calibration of venturi Meters, E-11, University of California, run by the Pelton Water Wheel Company; correspondence between Ray S. Quick, Chief Engineer, and M.P. O’Brien July 3, 1936 1936
Box 10, Folder 66.12 Primary elements for sewage and water works meters, by L.D. Carylon, reprinted from Water Works and Sewerage, November 1935
Box 10, Folder 66.13 The effect of installation on the coefficients of venturi meters; final report, by W.S. Pardoe, Transactions of the A.S.M.E., Vol. 65, No. 4 May 1943
Box 10, Folder 66.14 The effect of ambient temperatures on the coefficients of venturi meters, by W.S. Pardoe, Transactions of the A.S.M.E., pp. 457-463 July 1941
Box 10, Folder 66.15 The Dall flow tube, by I.O. Miner, reprinted from Transactions of the A.S.M.E., April 1956
Box 10, Folder 66.16 Investigations for the standardization of venturi tubes, by R. Witte, VDI, Ludwigshafen am Rhein undated
Box 10, Folder 66.17 Experiments with venturi tubes having a standard nozzle for the converging section, by Alb. Schlag, University of Liege January 1939
Box 10, Folder 66.18 The hydromike, Vol. IV, No. 3, Portland, Ore. May, 1941
Box 10, Folder 66.19 Determining coefficients for large venturi meters, by S.F. Coghlan, Engineering News-Record, pp. 185-186 January 29, 1931
Box 10, Folder 66.20 Discharge coefficients of Herschel-type venturi tubes, by A.L. Jorissen, Transactions of the A.S.M.E., November 1951
Box 10, Folder 66.21 Venturi tube characteristics, by J.W. Ledoux, Papers, ASCE, pp. 1787-1796 February 1927
Box 10, Folder 66.22
The equalization of pressure in the ring casing of throttling apparatus, by Wm. Beckmann, translated by E.B. Barnes from Forschung auf dem gebiete des Ingenieurwesens, Band 8, July/August 1937

Box 10, Folder 66.23
Standardization of venturi tubes for discharge measurement, by H. Lohman 1938

Box 10, Folder 66.24
Nozzle coefficients for free and submerged discharge, by R.G. Folsom, reprinted from A.S.M.E. Transactions, pp.233-238 April 1939

Box 10, Folder 66.25
Contribution a la normalisation des tubes venturi, par Alb. Schlag et Andre Jorissen, Revue Generale de L'hydraulique, 1946

Box 10, Folder 66.26

Box 10, Folder 67.1

Box 10, Folder 67.2
(Proposed) code of recommended practice covering installation, calibration and operation of positive displacement meters in liquid hydrocarbon service, by Joint ASME-API Committee for Volumeter Research October 1945

Box 10, Folder 67.3
(Tentative) code covering installation, proving and operation of positive displacement meters in liquid hydrocarbon service, by Joint ASME-API Committee for Volumeter Research May 1, 1946

Box 10, Folder 67.4
Rotary oil meters of the displacement and current types, by Everett M. Cloran, for presentation at the Fall Meeting of the A.S.M.E. October 4-6, 1937

Box 10, Folder 67.5
See 67.4

Box 10, Folder 67.6

Box 10, Folder 67.7

Box 10, Folder 67.8
Calibration of displacement meters on volatile-liquid-petroleum fractions, by E.W. Jacobson, Transactions of ASME, pp.701-704 November 1941

Box 10, Folder 67.9
Volumeter research; an interim report of the A.S.M.E. Special Research Committee on Fluid Meters, by Edgar E. Ambrosius and Howard S. Bean, Mechanical Engineering, pp.677-687 September 1940

Box 12, Folder 68.1
Calibration of Peerless pitot tube in pipes, by W.A. Page June 1949

Box 12, Folder 68.2
Performance characteristics of pitot tubes in water pipes, by William Allen Page, M.S. thesis in Mechanical Engineering, University of California, Berkeley 1949

Box 12, Folder 68.3
Pitot tubes operating instructions, Johnston Vertical Pumps, Pasadena, Calif undated

Box 12, Folder 68.4
Pitot tube characteristics in the measurement of water in circular pipes, by G. Clancy data book March 1950

Box 12, Folder 68.5
Progress report; pitot tube project, by Gerald M. Clancy February 1950

Box 12, Folder 68.6

Box 12, Folder 68.7
a) Friction heads due to water flow in cooper, brass and other smooth pipes, by F.E. Giesecke, Heating, Piping Air Conditioning - ASHVE Journal Section, pp.679-685 November 1942

Box 12, Folder 68.8

Box 12, Folder 68.9
Box 12, Folder 68.9	Streamlined pitot-tube bar for measuring water flow in large pipes, by F. Numachi, H. Murai and S. Abe, ASME, 16 p.(Paper no. 55-SA-25) April 1956
Box 12, Folder 68.10	Fluid flow through porous metals, by Leon Green and Pol Duwez, *Journal of Applied Mechanics*, 7 p. (Paper no. 50-SA-17) June 1950
Box 12, Folder 68.12	A general correlation of friction factors for various types of surfaces in cross flow, by A.Y. Gunter and W.A. Shaw, reprinted from the *Transactions* of the ASME Heat Transfer Division. pp.643-659 1945
Box 12, Folder 68.13	Design of modern industrial piping systems; the flow of fluids, *Tube-Turns*, Incorporated, Louisville, Ky 1935
Box 12, Folder 68.14	The flow of air and gas in vertical flue coke ovens, by George A. Davis, Wilputte Coke Oven Corporation 1945
Box 12, Folder 68.15	Pipe factors for quantity rate flow measurements with pitot tubes, by R.G. Folsom and H.W. Iversen, ASME, New York January 1949
Box 12, Folder 69.1	The rating and use of current meters, by Carl Rohwer, Colorado Experiment Station, Fort Collins, 133 p. (Tech. bulletin 3) May 1933
Box 12, Folder 69.2	Water measurement, by Wayne D. Criddle and Eldon M. Stock, Utah State Engineering Experiment Station, Logan, 51 p. (Bulletin no.2) June 9, 1941
Box 12, Folder 69.4	A view on discharge coefficient for large rectangular notches or weirs, by Kensaburo Toyoda, Research Reports of Faculty of Engineering, Meiji University, No.6, pp.1-10 1955
Box 12, Folder 69.5	Equipment for river measurements; plans and specifications for structures from which discharge measurements are made (Revised edition), U.S. Geological Survey, Water Resources Branch 1933
Box 12, Folder 69.6	Measurement of irrigation water on the farm, by H.A. Wadsworth, University of California, Agricultural Experiment Station, 36 p. (Circular no.250) July 1922
Box 12, Folder 69.7	Measuring water for irrigation, by J.E. Christiansen, University of California, Agricultural Experiment Station, Berkeley, 96 p. (Bulletin 588) March 1935
Box 12, Folder 69.8	Effect of turbulence on the registration of current meters, by David L. Yarnell and Floyd A. Nagler, American Society of Civil Engineers, pp.2611-2640. (Papers and discussions) December 1929
Box 12, Folder 69.9	Observations on the use of current meters for precise flow measurement, by L.A. Ott, *Transactions of the ASME*, pp.227-228. (HYD-57-6) December 1933
Box 12, Folder 69.10	a) Instructions for use for Ottmeter V, A. Ott, Kempten, Bavaria undated
Box 12, Folder 69.11	b) Construction and use of the Ottmeter Mark V, A. Ott, Kempten, Bavaria undated
Box 12, Folder 69.12	Le courant-mètre 'Boccardo', estratto dal *Giornale del Genio Civile-Revista dei Lavori Pubblici*, 1909
Box 12, Folder 69.13	Errors involved in the use of current meters, by Erik Lindquist, and Morrough P. O'Brien undated
Box 12, Folder 69.15	Current meter notes, by Ed. J. Hoff, Berkeley, Calif. undated
Box 12, Folder 69.16	Die genauigkeit einiger Wassermessverfahren, von O. Kirschmer und B. Esterer, sonderabdruck aus der *Zeitschrift des Vereines deutscher Ingenieure*, Bd.74, No.44 1930
Box 12, Folder 69.17	View on discharge coefficient for large rectangular notches or weirs, by Kensaburo Toyoda, Research Reports of the Faculty of Engineering, Meiji University, No.6 1955
Box 12, Folder 69.17

Box 12, Folder 69.18

Box 12, Folder 69.19
a) The calibration of current meters, by Erik Lindquist, Translation no.54 (from Swedish), by M.P. O’Brien October 18, 1924

b) The effect of inclination to the direction of flow on a current-meter supported on a rod and having a protecting rim, by Erik Lindquist, translation no.50 (from Swedish), by M.P. O’Brien April 17, 1926

c) On the errors of current-meters, by Erik Lindquist, Translation no.53 (from Swedish), by M.P. O’Brien February 19, 1927

Box 12, Folder 70.1

Box 12, Folder 70.2

Box 12, Folder 70.3

Box 12, Folder 70.4
Reaction tests of turbine nozzles for supersonic velocities and for subsonic velocities, by J.H. Keenan, reprinted from *Transactions of the ASME*, October 1949

Box 12, Folder 70.5
Vecchie e nuove formule del coefficiente udometrico, by Guido Ferro, estratto dal no.4 della rassegna mensile Tecnica Italiana, Maggio 1936-XIV, E.F.

Box 12, Folder 70.6

Box 12, Folder 70.7
Report of the joint Committee on Measurement of Natural Gas With Orifice Meters August 1930

Box 12, Folder 70.8
Quantity-rate fluid meters; correlation of coefficients and expansion factors, using the Reynolds Number and acoustic velocity ratio, by Ed S. Smith, Jr., *Transactions of the ASME*, pp.89-135. (HYD-52-7b) November 1929

Box 12, Folder 70.9
Methods of measuring large volumes of natural gas, by J.E. Overbeck, and S.R. Beiter, ASME July 1939

Box 12, Folder 70.10
The measurement of air flow in fan inlet and discharge ducts, Lionel S. Marks, *Transactions of the ASME*, pp.429-510. (PTC-57-1) January 1936

Box 12, Folder 70.11

Box 12, Folder 70.12

Box 12, Folder 70.13
Influence of steam-flow metering equipment on piping design, by R.M. van Duzer, Jr., *Mechanical Engineering*, pp.834-836. Folder includes Letters and comment, pp.547-552 November 1938 July 1939

Box 12, Folder 70.14
High pressure meter testing with critical flow orifice prover, by R.M. Stewart, Pacific Gas and Electric Company May 1935

Box 12, Folder 70.15
Alignment chart for orifice meter calculations for gas pipe line, *The Oil and Gas Journal*, pp.69-72 July 22, 1941

Box 12, Folder 70.16
Two- and three-dimensional flow of air through sonic orifices, by Alexander Weir, Jr., J. Louis York, and Richard B. Morrison undated

Box 12, Folder 70.17

Box 12, Folder 70.18
Quantity-rate fluid meters (coefficients and expansion factors correlated with flow similarity, using the Reynolds number and acoustic velocity ratio, by S. Smith Jr., Paper no.719, World Engineering Congress, Tokyo 1929

Box 12, Folder 70.19
The flow of saturated water through throttling orifices, by M.W. Benjamin and J.G. Miller, *Transactions of the A.S.M.E.*, pp.419-429 December 1940
Box 12, Folder 70.20
Performance of conical jet nozzles in terms of flow and velocity coefficients, by Ralph E. Grey, Jr. and H. Dean Wilsted, National Advisory Committee for Aeronautics, Washington, D.C. 1949

Box 12, Folder 70.21

Box 12, Folder 71.1

Box 12, Folder 71.2
The effects and corrections of gas pulsation problems, by Foster M. Stephens, The Fluor Corporation, Ltd., Los Angeles, 1 v. (unpaged) (Bulletin PD-1) undated

Box 12, Folder 71.3
a) Pulsating air velocity measurement, by Neil P. Bailey, Rutgers University 1938

Box 12, Folder 71.4

Box 12, Folder 71.5

Box 12, Folder 71.6
The detection and mitigation of pulsation in orifice meters, by T.K.M. Smith, and R.E. Morter, G A S, pp.55-63 September 1938

Box 12, Folder 71.7
Survey of metering of pulsating flows of gas, by Howard S. Bean, Western Gas, pp.44-48 October 1935

Box 12, Folder 71.8

Box 12, Folder 71.9
The damping of large amplitude vibrations of a fluid in a pipe, by R.C. Binder, reprinted from the Journal of the Acoustical Society of America, Vol. 15, No. 1, pp.41-43 July 1943

Box 12, Folder 71.10

Box 12, Folder 71.11

Box 12, Folder 71.12
See 71.6

Box 12, Folder 71.13
Pulsation and its effect on flowmeters, by E.J. Lindahl, Transactions of the A.S.M.E., pp.883-894 November 1946

Box 12, Folder 72.1
Coordinate methods of measuring pipe flow, by J.E. Christiansen, University of California, Division of Irrigation Investigations and Practice undated

Box 12, Folder 72.2
The use of an elbow in a pipe line for determining the rate of flow in the pipe, by Wallace M. Lansford, University of Illinois Bulletin, Vol. XXXIV, No. 33 December 22, 1936

Box 12, Folder 72.3
Transient response of the turbine flowmeter, by Jerry Grey, reprinted from Jet Propulsion, February 1956

Box 12, Folder 72.4
Turbine discharge metering at the safe harbor hydroelectric development, by J.M. Mousson, Transactions of the ASME, January 1941

Box 12, Folder 72.5
Piezometer investigation, by Charles M. Allen and Leslie J. Hooper, Transactions of the ASME, 16 p. (HYD-54-1) December 1931

Box 12, Folder 72.6
Manometer errors due to capillarity, by Richard G. Folsom undated

Box 12, Folder 72.7
The use of pipe bends as flow meters, by Herbert Addison, *Engineering*, pp.227-229

March 4, 1938

Methods of flow measurement, by Jerry Grey and Frederick F. Liu, reprinted from *Journal of the American Rocket Society*, pp.133-149 May-June, 1953

Precision and accuracy of orifice-meter installations, by L.V. Cunningham, Jr., *Mechanical Engineering*, pp.979-983 December 1950

Measuring velocities in dredge pipes; salt-velocity method applied to pipe lines transporting solids, by George W. Howard, *Mechanical Engineering*, pp.287-288

Hydraulic turbine tests by the Allen method; electrical conductivity of salt solution forms basis of method which gives required test accuracy without the use of coefficients or empirical formulas, by C.M. Allen, *Power Plant Engineering*, May 15, 1927

Field checks of the salt-velocity method, by Oswald H. Dodkin, *Transactions of the A.S.M.E.*, pp.663-676 November 1940

Salt-velocity measurements at low velocities in pipes, by Leslie J. Hooper, *Transactions of the A.S.M.E.*, pp.651-661 November 1940

A magnetic flowmeter, by W.M. Lansford, pp.20-23 January 1939

"Der beiwert kreisrunder Überfälle," von A. Staus, sonderdruck aus *Wasserkraft und Wasserwirtschaft*, Heft 4 1931

Proceedings of the One Hundred and Thirty-fifth Regular Meeting, *American Society of Civil Engineers*, Vol. 23, No. 5 October 18, 1927

Mixing, diluting or contaminating effects with liquid flow in pipes, by Ernest W. Schoder, *The Cornell Civil Engineer*, pp.122-127 December 1911

 characteristics of differential flow meters and factors affecting their operation, by L.K. Spink, reprinted from *Petroleum Refiner*, October, November and December 1944

Metodi chimico e chimico-elettrico per la misura delle portate, by Vittorio Pisa, Comitato per l'Ingegneria del Consiglio Nazionale delle Ricerche, Centro di Ricerche Idrauliche nel R. Istituto Superiore de Ingegneria di Padova 1935

Harold W. Iversen papers

WRCA 081
| Box 12, Folder 72.31 | Discharge measurements by sharp-edged orifices and salt velocity methods, by L.J. Hooper, American Society of Mechanical Engineers, 4 p. (Paper no. 62-HYD-9) March 1963 |

Series 56. Turbines, General Theory 1910-1948

Box 12, Folder 73.1	Water turbine machinery, by A.A. Fulton, pp.206-236. (Paper no. 1110) December 14, 1948
Box 12, Folder 73.2	Elements of hydraulic power generation, by Arthur M. Greene, Jr., John Wiley Sons, Inc. 1934
Box 12, Folder 73.3	Theory and test of an overshop water wheel, by Carl Robert Weidner, Bulletin of the University of Wisconsin, No. 529, Madison, Wisconsin, 136 p. (Engineering series Vol. 7, No. 2, pp.117-254.) June 1913
Box 12, Folder 73.4	Hydraulic turbines, I.P. Morris Division, Baldwin-Southwark Corp., Philadelphia, 1 v. (unpaged) (Bulletin 100) May 1936
Box 12, Folder 73.5	Inter-relation of operation and design of hydraulic turbines, by Frank H. Rogers and Lewis F. Moody, 3d Annual Hydro-Electric Conference, Philadelphia 1925
Box 12, Folder 73.7	Theory of the turbine, by Hans Lorenz, Technischen Physik 1910
Box 12, Folder 73.8	The recent development of construction in water turbines and pumps, by Fr. Oesterlien, translated by Joseph F. Staufer, from Deutsche Wasserwirtschafts, Heft 3, pp.1-8 1935
Box 12, Folder 73.9	Economic draft-tube proportions, by A.R. Dawson, Transactions of the A.S.M.E., pp.239-244 April 1941
Box 12, Folder 73.10	Courbes caracteristiques du fonctionnement des turbines hydrauliques, par Louis Bergeron, Congres International de Mecanique Generale pp.138-144 undated
Box 12, Folder 73.11	IX. Hydrodynamische methoden der turbinentheorie, von Bruno Eck, Jolubuch des Wessenschofthchen Guellschoft fur Tuft Fohut, pp.107-113 1925
Box 12, Folder 73.12	"Benoit Fourneyron " by Frederic W. Keator, Mechanical Engineering, pp.295-301 1802-1867 April 1939
Box 12, Folder 73.13	A better method of representing and studying water-turbine performance, by R.A. Sutherland, Transactions of the ASME, pp.675-686 October1946
Box 12, Folder 73.14	Miscellaneous items and articles on turbines 1939

Series 57. Impulse Turbine 1938-1949

Box 12, Folder 74.1	The 62,000 hp, vertical, six-nozzle, impulse turbines for the Bridge River hydro development of the British Columbia Electric Railway Company, Ltd., by W.F. Boyle and I.M. White, The Pelton Water Wheel Company, San Francisco 1949
Box 12, Folder 74.2	Efficiency analysis of Pelton wheels, by Robert Lowy, Transactions of the A.S.M.E., pp.527-538 August 1944
Box 12, Folder 74.3	The Pelton water wheel, I-Developments by Pelton and others prior to 1880, by W.F. Durand, Mechanical Engineering, pp.447-454. (Includes ..., II-Developments Doble and others, 1880 to date, pp.511-518.) June 1939
Box 12, Folder 74.4	Problems encountered in the design and operation of impulse turbines, by Ray S. Quick, Transactions of the ASME, pp.15-27 January 1940
Box 12, Folder 74.5	Impulse turbines, by M.P. O'Brien, for Mechanical Engineering 126, University of California, Department of Mechanical Engineering Spring 1938

Series 58. Francis Turbine 1920-1949

Box 13, Folder 75.1	Francis or impulse; the influence of wear and operating conditions, by A. Puyo, Grenoble July 1949
Box 13, Folder 75.2	Nantahala turbine, by J.P. Growdon, R.V. Terry and H.H. Gnuse, Jr., *Transactions of the ASME*, pp.687-700 October 1946
Box 13, Folder 75.4	Test characteristics of a combined pump-turbine model with wicket gates, by R.V. Terry, and F.E. Jaski, *Mechanical Engineering*, pp.651-660 September1940
Box 13, Folder 75.5	Penstocks for the Grand Coulee Dam, by P.J. Bier, *Transactions of the A.S.M.E.*, pp.219-227 April 1941
Box 13, Folder 75.6	Control gates for Grand Coulee Dam, by P.A. Kinzie, American Society of Mechanical Engineers September1940
Box 13, Folder 76.1	A generalized vortex theory of the screw propeller and its application, by Hans Reissner, National Advisory Committee for Aeronautics, Washington, D.C., 33+ l. (Technical note no. 750) February1940
Box 13, Folder 76.2	The Kaplan turbines at Bonneville, by Paul L. Heslop, and George A. Jessop, *Transactions of the ASME*, pp.97-108 February1939
Box 13, Folder 76.3	European high specific speed propeller turbines development, 1 folder (includes typescript and handwritten notes, graphs, tables.) 1926
Box 13, Folder 76.4	Hydraulic machinery: propeller turbines, by M.P. O’Brien, for Mechanical Engineering 126, University of California, Department of Mechnacal Engineering, Berkeley Spring 1938
Box 13, Folder 76.5	Folder entitled Kaplan turbines , including articles, notes, miscellaneous material on propeller turbines 1921-1931
Box 13, Folder 76.6	The Safe Harbor hydroelectric development, 1941 Spring Meeting, American Society of Civil Engineers, Baltimore, Md April 23-25, 1941
Box 13, Folder 76.7	Kaplanturbinens teori, by K. Axel Ahlfors, *Teknisk Tidskrift*, Hafte 7, pp.77-86 July 1932
Box 13, Folder 76.8	Turbine discharge metering at the Safe Harbor hydroelectric development, by J.M. Mousson, *Transactions of the ASME*, pp.369-384 July 1941

Series 59. Propeller Turbines 1926-1941

Box 13, Folder 77.1	The Banki turbine, by C.A. Mockmore and F. Merryfield, ASME, Aeronautics and Hydraulics Divisions pp.75-82 undated
Box 13, Folder 77.2	Handwritten notes and design of Banki turbine, by Ronan September 1933
Box 13, Folder 77.3	The Banki turbine, by Percy B. Dawson, Jr., for M.E. 131B, University of California, Department of Mechanical Engineering April 1935
Box 13, Folder 77.4	Commercial application of the Banki turbine, by Fred H. Rued, for M.E. 131B, University of California, Department of Mechanical Engineering April 1935
Box 13, Folder 77.5	Banki turbine log, prepared for HE 57, University of California 1935
Box 13, Folder 77.6	Leakage loss in turbine blading, by F. Salzmann also includes notes, articles on subject undated
Box 13, Folder 77.7	Untersuchung einer Radialturbine, ein Beitrag zur Ermittlung der Winkelübertreibung, by Richard Dziallas, dissertation, Technischen Hochschule Hannover 1935
Box 13, Folder 77.8	Handwritten notes on turbine draft tubes by C. Voetsch undated
Box 13, Folder 77.9	Draft tube tests, by the Hydraulic Power Committee 1930
Box 13, Folder 77.10	Waterwheel testing and operating records of plant discharge, National Electric Light Association, Hydraulic Power Committee, 33 p. (Publication no.278-34) March 1928
Box 13, Folder 77.12

Box 13, Folder 77.13

Box 13, Folder 77.14
Red River, Denison Dam and Reservoir Powerhouse; notes on surge tank hydraulic design and analysis, by R.G. Hornberger and J.P. Herak October 1942

Box 13, Folder 77.15

Box 13, Folder 77.16
See 73.6

Box 13, Folder 77.17

Box 13, Folder 77.18

Box 13, Folder 77.19

Box 13, Folder 77.20
The present trend of turbine development, by Lewis F. Moody, American Society of Mechanical Engineers, New York, pp. 113-1140 1921

Box 13, Folder 77.21
Speed changes of hydraulic turbines for sudden changes of load, by Earl B. Strowger and S. Logan Kerr, American Society of Mechanical Engineers, New York, pp. 209-262 1926

Box 13, Folder 77.22

Box 13, Folder 78.1

Box 13, Folder 79.0
Advance Castalu Blower Wheels, Advance Aluminum Castings Corp., Chicago, Ill. 1940?

Box 13, Folder 79.1

Box 13, Folder 79.2
The Sirocco Fan, American Blower Corporation, Detroit, Mich., and Canadian Sirocco Company, Ltd., Windsor, Ontario August 1938

Box 13, Folder 79.3
Single Stage Turbo Blowers, Allis-Chalmers, Milwaukee, Wis circa 1940

Box 13, Folder 79.4
Multi-Stage Blowers, Allis-Chalmers, Milwaukee, Wis circa 1941

Box 13, Folder 79.5
"Buf-flow" Limit-Load Axial Flow Fans, Buffalo Forge Company, Buffalo, N.Y., (Bulletin 3229-A) c. 1940

Box 13, Folder 79.6
"Buffalo" Limit-Load Conoidal Fans and Silent Floating Bases, Buffalo Forge Company, Buffalo, N.Y. (Bulletin no. 3099) undated

Box 13, Folder 79.7
Buffalo "Limit Load" Conoidal Fans, Multi-Rating Tables, Buffalo Forge Company, Buffalo, N.Y., (F-50) August 1938

Box 13, Folder 79.8
ILG Blowers; Engineering Data, Ilg Electric Ventilating Company, Chicago, Ill., (Catalog no. 241) c. 1941

Box 13, Folder 79.9
La-Del Coal Mining Machinery - La-Del Troller Ventilating Fans, La-Del Conveyor Mfg. Co., New Philadelphia, Ohio, (Bulletin no. 116) circa 1940

Box 13, Folder 79.10
Herman Nelson Autovent Unit Blowers for Industrial and Commercial Ventilation, The Herman Nelson Corporation, Moline, Ill. 1944?

Box 13, Folder 79.11
Performance Tables, Type Me High Speed Wheel Centrifugal Fans, The New York Blower Company, Chicago, Ill. 1940
Box 13, Folder 79.12 Propellair Improved Airfoil Propeller Axial Flow Fans and Ventilating Equipment, Profellair, Inc., Springfield, Ohio 1941
Box 13, Folder 79.13 Hartzell Charavay Fans, Hartzell Propeller Fan Co., Piqua, Ohio, (Catalogue no.11) circa 1938
Box 13, Folder 79.14 Victory Axiflo Fans, B.F. Sturtevant Co., Hyde Park, Mass., (Catalog 460) circa 1942
Box 13, Folder 79.15
Box 13, Folder 79.16 Silentvane Fans (Design 5), B.F. Sturtevant Company, Hyde Park, Mass., (Catalog no.381-2) c.1935
Box 13, Folder 79.17 Centrifugal Compressors (Design Fourteen), B.F. Sturtevant Company, Hyde Park, Boston, Mass., (Catalog no.458) c.1941
Box 13, Folder 79.18 Vane Control for Mechanical Draft Fans, B.F. Sturtevant Company, Hyde Park, Boston, Mass., (Bulletin no.446) c.1939
Box 13, Folder 79.19 Multivane Fans (Design 6), B.F. Sturtevant Company, Hyde Park, Boston, Mass., (Catalog no.271-4) circa 1939
Box 13, Folder 79.20 Westinghouse Products for Air Handling, Air Cleaning, Air Conditioning, Sturtevant Division, Hyde Park, Boston, Mass., (Catalog 600) March 1952
Box 13, Folder 79.21
Box 13, Folder 79.22 Aerotor Blower Wheels, Torrington Mfg. Co., Torrington, Conn., (Bulletin no.9341) 1941
Box 13, Folder 79.23 Performance Tables Type Me, Centrifugal Fans Slow Speed Wheels, The New York Blower Company, Chicago, Ill. 1940?
Box 13, Folder 79.24
Box 13, Folder 80.0 Untersuchungen über den Verlust in rechtwinkeligen Rohrverzweigungen, von G. Vogel, Mitteilungen des Hydraulischen Instituts der Technischen Hochschule München, Heft 2, Berlin, pp.61-64 1928
Box 13, Folder 80.1 Energy losses in divergent streams, by David W. Chenot, for ME131B, University of California May 31, 1949
Box 13, Folder 80.2 Summary: mixing streams in closed conduits, by Charles E. Lockhart, Jr., for M.E.131B, University of California May 1946
Box 13, Folder 80.3 Individual summary: mixing streams in closed conduits, by A.C. Hughes, Jr., for ME131B, University of California May 1946
Box 13, Folder 80.4 Miscellaneous handwritten notes on mixing of streams and intersecting streams 1936
Box 13, Folder 80.5 Miscellaneous handwritten notes, correspondence, blueprints on intersecting streams 1936-1937
Box 13, Folder 80.6 Mixed flow in closed circular conduits, by Walter Paul, for ME131B, University of California June 1946
Box 13, Folder 80.7 Mixing streams in closed circular conduits, by John P. Kempton and Otto Hoefler, thesis, University of California, Department of Civil Engineering May 1939
Box 13, Folder 80.8 Mixing streams in closed circular conduits: Log book, by A.C. Hughes, Jr., C. Lockhart Jr., and W. Paul, for ME131B, University of California, Berkeley May-June 1946
Box 13, Folder 80.9 Pressure losses at six by four inch tee intersections, by Robert A. Tuttle, for M.E.131B, University of California June 1945
Box 13, Folder 80.10 Pressure drop in reducing tees, concentric reducers and elbows, by A.M. Moschetti, Tube Turns Inc. rev.August1951
Box 13, Folder 80.11 Transactions of the Hydraulic Institute of the Munich Technical University, American Society of Mechanical Engineers, New York 1935
Box 13, Folder 80.12 Results: Intersecting streams, by E.A. Sorour, for ME299, University of California 1947
Box 13, Folder 80.13 Losses at the junction of two streams, by Clifford Sommarstrom, University of California, 25 l.(typescript) for Exp.He-4 May 1936
Box 13, Folder 80.14
Handwritten notes on uniting streams undated

Handwritten notes and partial typescript copy of Intersecting streams, by W.R. Shuler, M.S. thesis draft, University of California 1940

Comparison of experimental and theoretical curves for the pressure rise across a discharge lateral undated

Chemical Engineering Progress, Vol. 44, No. 9, published by American Institute of Chemical Engineers September 1948

Energy loss for divergent flow in standard pipe tees, by Raymond L. Hobbs, for ME 131B, University of California May 1948

Energy losses in divergent streams, by David W. Chenot, for M.E. 131B, University of California May 1949

Notes on orifice calibrations, by El-sayed A. Sorour, for ME 299, University of California 1947-48

Intersecting streams notes and tables, by E.A. Sorour, for ME 299, University of California 1947

Box 14, Folder 80.21
Mitteilungen des Hydraulischen Instituts der Technischen Hochschule München, by D. Thoma, Heft 3, Berlin 1939

Mittelungen des Hydraulischen Instituts der Technischen Hochschule München, by D. Thoma, Heft 1, Berlin 1926

Box 13, Folder 81.1
Miscellaneous articles, notes, graphs, photos on Savonius Rotor; reports on laboratory tests; bibliography and literature articles undated

Miscellaneous references and correspondence in re Savonius Rotor and wind power undated

Miscellaneous bibliographic material and advertisements on wind power undated

Savonius Rotor (data book), University of California, Department of Mechanical Engineering, 1 v. (HE-56) 1937-38

Putting on airs, in Engineering Outlook, University of Illinois, at Urbana-Champaign, Vol. 16, No. 10 May 1975

Box 13, Folder 82.1
Notes for design of blowdown water tunnel 1953

Water tunnel vaned-turn studies, Ordnance Research Laboratory, Pennsylvania State College September 1947

The unsteady flow water tunnel at the Massachusetts Institute of Technology, by James W. Daily, Kenneth C. Deemer and Aaron L. Keller, Massachusetts Institute of Technology, Hydrodynamics Laboratory, 66 l. (Technical report no. 2) May 1951

A study of wing left distributions, Ordnance Research Laboratory, Pennsylvania State University April 1948

Airfoil information for propeller design, Ordnance Research Laboratory, Pennsylvania State College November 1947

Hydrodynamic design of 48-inch water tunnel at The Pennsylvania State College, Ordnance Laboratory, Pennsylvania State College February 1948
Box 13,	Folder 82.8	The experimental water tunnel at The Pennsylvania State College, Ordnance Research Laboratory, Pennsylvania State College April 1948
Box 13,	Folder 82.9	A study of propeller blade - surface cavitation noise, Ordnance Research Laboratory, Pennsylvania State College October 1948
Box 13,	Folder 82.10	Water tunnel diffuser flow studies, Part I - Review of literature, Ordnance Research Laboratory, Pennsylvania State College May 1949
Box 13,	Folder 82.11	Water tunnel diffuser flow studies, Part II - Experimental research, Ordnance Research Laboratory, Pennsylvania State College July 1949
Box 13,	Folder 82.12	Garfield Thomas water tunnel operations, by R.B. Power, et al., Ordnance Research Laboratory, Pennsylvania State College May 1949
Box 13,	Folder 82.14	The water tunnel as a tool in hydraulic research, by James W. Daily, reprinted from Proceedings of the Third Hydraulics Conference, Bulletin 31, University of Iowa Studies in Engineering, pp.169-191 1947
Box 13,	Folder 82.15	Water tunnel working section flow studies, Ordnance Research Laboratory, Pennsylvania State College June 1948

Series 66. Radial Loads in Centrifugal Pumps 1956-1957

Box 13,	Folder 83.1	Pressure distribution in the volute of a horizontal centrifugal pump, by H.W. Iversen and R.E. Rolling, M.E.299, University of California undated
Box 13,	Folder 83.2	The volute pressure variation in a centrifugal pump, by R. Kurosawa and A. Flittner, for M.E.131B, University of California May 1957
Box 13,	Folder 83.3	Literature survey - velocity distribution in the volute of a centrifugal pump, by R.E. Rolling undated
Box 13,	Folder 83.4	Data for masters thesis - centrifugal pump, radial load, by R.E. Rolling undated
Box 13,	Folder 83.5	Centrifugal pump volute pressure distribution, by Jim Carlson, for M.E.299, University of California undated
Box 13,	Folder 83.6	Radial pressure distribution around the volute of a centrifugal pump, by Robert D. Davis, and Arthur L. Austin, for M.E.131B, University of California Spring 1956